As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program supports new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This project will meet this goal through rigorous research and the broad implementation of an environmental science literacy professional development and learning program for informal educators and youth engaged in outdoor science programs (OSP). With growing support from the literature and the Next Generation Science Standards (NGSS), much attention has been placed on creating and leveraging interdisciplinary science learning opportunities beyond science classrooms. As such, an estimated 300 residential OSPs currently exist in the United States. Unfortunately, the informal educators often charged with facilitating these deep and impactful science learning experiences often lack robust formal training in evidenced-based, age-appropriate environmental science content knowledge and pedagogy specific for the youth in their programs. This issue is often more pronounced in under-resourced and under-served programs and communities. This project will directly address these pervasive challenges in the field by not only providing much needed science focused professional development and resources to informal educators but also by specifically targeting and training informal leaders and educators serving youth in predominately rural areas, low-income communities, and underrepresented communities.
Approximately 200 OSP leaders at 100 OSPs around the country will participate in a week-long, intensive training in the professional development model at one of five regional residential leadership institutes. OSP leaders will then redeliver the training to the approximately 1,500 OSP educators/field instructors in their home institutions. The OSP educators/field instructors will then use what they learn through the professional development to facilitate the environmental science learning program (i.e., curriculum, field experiences, resources, pedagogy) to over 1 million youth (grades 3-8) enrolled in their residential outdoor science programs. In addition, a rigorous implementation study, efficacy study and evaluation will be conducted. The implementation study will investigate: (a) Which of the professional learning model practices were implemented and (b) What successes and challenges the programs faced implementing the model. The mixed methods efficacy study will explore: (a) if outdoor science programs contribute to the development of science learning activation and environmental literacy? and (b) what are the features of these experiences that are correlated with increases in science learning activation and environmental literacy. Approximately 25-35 youth will be randomly selected from each of 50 randomly selected sites to participate in the efficacy study. The data and findings from the research and evaluation produced by this project will contribute to a relatively sparse knowledge and research base specific to youth efficacy and implementation processes and practices across nearly 1/3 of the estimated 300 existing residential outdoor science programs in the United States.
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the teach pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeks to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia, PA. As such, this project will deepen understandings of program replication and of addressing the needs of youth in economically-challenged communities in order to promote mathematics learning.
The project's research studies will assess the multiple factors that make Math Corps successful with youth in Detroit and document the implementation of the program to the three replication sites. Research methods include discourse analyses, surveys, interviews, and pre/post-tests. The project will also conduct a retrospective evaluation of Math Corps based on quantitative datasets regarding both near-term and long-term youth outcomes.
This projects is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter
The achievement gap begins well before children enter kindergarten. Research has shown that children who start school having missed critical early learning opportunities are already at risk for academic failure. This project seeks to narrow this gap by finding new avenues for bringing early science experiences to preschool children (ages 3-5), particularly those living in communities with few resources. Bringing together media specialists, learning researchers, and two proven home visiting organizations to collaboratively develop and investigate a new model that engages families in science exploration through joint media engagement and home visiting programs. The project will leverage the popularity and success of the NSF-funded PEEP and the Big Wide World/El Mundo Divertido de PEEP to engage both parents and preschool children with science.
To address the key goal of engaging families in science exploration through joint media engagement and home visiting programs, the team will use a Design Based Implementation Research (DBIR) approach to address the research questions by iteratively studying the intervention model (the materials and implementation process) and assessing the impact of the intervention model on parents/caregivers. The intervention model will include the PEEP Family Engagement Toolkit that will support 20 weeks of family science investigations using new digital and hands-on science learning resources. It will also include new professional development resources for home educators as well as and the implementation process and strategies for developing and implementing the Toolkit with families.
The proposed research focuses first on refining and improving program design and implementation, and second, on investigating whether the intervention improves the capacity of parent/caregivers to support young children's learning in science. Ultimately this research will accomplish two important aims: it will inform the design of the PEEP family engagement intervention model, and, more broadly, it will build practical and theoretical understanding of: 1) effective family engagement models in science learning; 2) the types of supports that families and home educators need to implement these models; and 3) how to implement these models across different home visiting programs. Given the reach of the home visiting programs and the increasing interest in supporting early science learning the potential for broad impact is significant. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Young people learn about science, technology, engineering, and math (STEM) in a variety of ways and from many sources, including school, the media, personal experiences, and friends and family. Yet STEM participation and identification by youth are not equal across social, economic, and cultural communities. This project will study a long-term, out-of-school program for high school-age youth, who are from groups under-represented in STEM academics and careers: girls, youth from low-income households, and youth of color. Located in the urban context of the Science Museum of Minnesota, the Kitty Andersen Youth Science Center (KAYSC) engages youth in applying culturally rich STEM content to work toward social justice and community building. Specifically, this project will examine how the learning practices of the KAYSC model support youth in identifying with, engaging in, and participating in STEM. Through studying the KAYSC's STEM Justice model, which centers youth as learners, teachers, and leaders who address critical community issues through STEM, this project will develop resources that informal science educators in a variety of contexts and programs can use to promote positive social change, equity, inclusion, and applied STEM learning.
The Science Museum of Minnesota will use design-based implementation research to study this model. This research will draw on and further the emerging theoretical framework of science capital. Science capital attempts to capture multiple aspects of science learning and application, including science knowledge, social and cultural resources, and science-related behaviors and practices. Empirically developing the theory of science capital has the potential to build concrete understanding of how to address inequalities in science participation. Four teams will work independently and collaboratively to do so: an adult research team, a high school youth research team, a practitioner team, and a co-design team composed of representatives from the other three teams. Research teams will collect data in the form of observations, semi-structured interviews, practitioner activity reports, artifacts, and the experience sampling method. Initial cycles of design will occur at the Science Museum of Minnesota as researchers and practitioners document, analyze, and iteratively design learning practices within the STEM Justice model. In the second half of the grant, the team will work with an external out-of-school time youth leadership site to implement the redesigned model. Participatory research and design methods involving both youth and adults can advance understanding of what makes out-of-school time STEM learning meaningful, relevant, and successful for marginalized youth and their communities. Grounded in culturally and socially relevant, community-based resources and programming, this project will study how leveraging STEM out-of-school time learning connected to social justice can broaden access to STEM as well as develop workforce, and leadership, and STEM skills by under-represented youth. The project also builds staff capacity for promoting equity and access in informal learning settings.
This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models in Making poised to catalyze new approaches in STEM learning and innovation. Employing a novel design and development approach, this Early Concept Grant for Exploratory Research (EAGER) will test the feasibility of integrating Making concepts with real world micro-manufacturing engineering principles within the context of intense, multi-year team apprenticeship experiences for high school students. The apprenticeship model is particularly novel, as current Making research and experiences predominately take place in afterschool and summer programs for up to 25 youth. The proposed apprenticeships will require a two year commitment by a small cohort of Texas high school students, which will provide an opportunity to examine the feasibility and impact of the effort longitudinally. The cohort will learn to think critically, solve problems, and work together as a Making Production Team (MPT) in a customized makerspace in their high school, constructing engineering-based science kits for implementation in a local elementary school. Not only will the students enhance their content knowledge while developing design and development skills but the students will also receive stipends which will address two very practical needs for the targeted high need population - employment and workforce development. Few, if any, efforts currently serve the targeted population through the contextualization of Making within a supply chain management and micro-manufacturing framework that extends the Making experience by integrating the student designed products into elementary classrooms. As such, this project will contribute to essentially unexplored areas of Making research and development.
Six high school students from high poverty, underserved Texas communities along the Texas-Mexico border (colonias) will be selected for the Making Production Team (MPT). In Years 1 and 2, the students will meet regularly during the academic school year and over the summer with Texas A & M University undergraduates, graduate students, and the project team to learn key aspects of Making and manufacturing (i.e., ideation, prototyping, design, acquisition, personnel, and production) through hands-on making activities and direct instruction. Concurrently, a research study will be conducted to explore: (a) the actualization of the model in an underserved community, (b) the effectiveness of problem-based learning to train students in the model, and (c) STEM knowledge and self-concept. Data will be collected from multiple sources. An adapted version of the Academic Self-Description Questionnaire will be administered to the students to assess their STEM technical knowledge and skills as well as their self-concept in relation to STEM domains. Remote and in person interviews will be conducted with the students to track the evolution of the primary dependent variables, STEM learning and self-concept, over time. Program facilitators and partners will be interviewed to examine the feasibility of the making experience within the given context and for the targeted students. Finally, the students' diary reflections, products, and video recordings of their work sessions will also be examined. Time-series quantitative tests and in-depth qualitative methods will be used to analyze the data.
DATE:
-
TEAM MEMBERS:
Francis QuekSharon Lynn ChuMalini NatarajarathinamMathew Kuttolamadom
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.
Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:
1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.
2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.
3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.
These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE:
-
TEAM MEMBERS:
Katherine Richardson BrunaLyric Colleen Bartholomay
The Cyberlearning and Future Learning Technologies Program funds efforts that will help in envisioning the next generation of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that showed the possibilities of the proposed new type of learning technology, and project teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and answer questions about how people learn with technology. Although for years researchers have believed technology could afford anytime-anywhere learning, we still don't understand how learners behave differently across contexts, such as home, school, and in the community, and how to get youth to identify as learners across those contexts. This proposal aims to use mobile devices and strategically placed shared kiosks to 'scientize' youth in two low-income communities. Through strategic partnerships with community organizations, educators, and families, the innovation is to get primary and middle-school students engaging in scientific inquiry in the context of their neighborhoods. Research will help determine how the technology can best be deployed, but also answer important questions about how communities can provide support to help kids think like scientists and identify with science. This project will design and implement ubiquitous technology tools that include mobile social media and tangible, community displays (collectively called ScienceKit) that are deeply embedded into two urban neighborhoods, and demonstrate how such ubiquitous technologies and related cyberlearning strategies are vital to improve information flow and coordination across a neighborhood ecosystem, in order to create environments where children can connect their science learning across contexts and time (e.g. scientizing). A program called ScienceEverywhere comprised of partnerships between tightly connected neighborhood organizations with mentors, teachers, parents, and researchers will help learners develop scientifically literate practices both in and out of school, and will demonstrate students' learning to their communities. Research will consist of mixed methods studies of use of the tools, including iterative design-based research, ethnography, and the use of participant observers from the community; these will be triangulated with usage logs of the technologies and content analysis of microblogs by the learners on their identities and interests. Discourse analysis of interviews with focal learners will orient the qualitative work on identity development, and analysis using activity theory will inform the influences of the social practices and sociotechnical systems on learner trajectories. Formative evaluation will help shed light on if and how the sociotechnical system promotes STEM literacy and STEM identity development.
The Chicago Zoological Society (CZS) in collaboration with Eden Place Nature Center, the Fuller Park Community Corporation, and the University of Illinois at Chicago (UIC) will implement the SCIENCES Program, Supporting a Community's Informal Education Needs: Confidence and Empowerment in STEM. The primary goals of this Full Scale Development project are to broaden access to and participation in environmental science, strengthen partnerships between CZS, Eden Place, and UIC, and gain insights into the 'ecosystemic' learning model which promotes scientific literacy and agency in the community. The project targets a low-resource community with a minority audience while the secondary audience is informal science learning organizations and researchers who will advance research in informal learning. The theoretical framework for the project design draws on conservation psychology, informal science learning, civic ecology education, and urban science education to create an ecosystematic, geographically centered approach. The deliverables include research, curriculum, and engaging hands-on programs for youth, families, adults, and teachers, reaching both in-school and out-of-school audiences, in addition to the SCIENCES Implementation Network. Three potential curriculum themes to be explored are water conservation and protection, pollinators for healthy ecosystems, and community resilience to climate change. The SCIENCES project offers a comprehensive suite of engaging programs for community audiences. For example, the year-long Zoo Adventure Passport (ZAP) program for families includes hands-on experiments and field trips, while project-based learning experiences enable teens to create wetlands, design interpretive signage, and develop associated public programming. School-based programs include professional development for teachers on the Great Lakes ecosystem and invasive species. Existing programs that have been previously evaluated and demonstrated to show learning impacts will be adapted and modified to meet the goals of the ecosystemic learning model by providing multiple learning opportunities. New learning resources will also be created to support the content themes and provide continuity. The result will be a comprehensive approach that ensures deep community engagement by individuals, families, and organizations, with cohesiveness provided by the overarching content themes which broaden access to STEM learning resources and leverages partnerships. The project includes both a research and evaluation plan. The primary research question to be addressed is: How does a large informal science learning institution work with a community-based organization to support environmental scientific literacy and agency at all levels of the community? A sociocultural framework will be used for this mixed-methods case study research. Study participants include community leaders, youth, parents, teachers, and staff from Eden Place. The case study sample will include 20 focal individuals drawn from the participant groups and approximately 300 survey participants. Case study data will be triangulated with evaluation data and analyzed using a grounded theory approach. By examining changes from the baseline following the implementation of the community programs, the findings may provide insight on agency and science literacy among community members. The comprehensive, mixed-methods evaluation plan employs a quasi-experimental design and incorporates front-end, formative, and summative evaluation components. The evaluation questions address the quality of the processes and products, access to environmental science learning opportunities, environmental science literacy, sustainability, and barriers to implementation. An extensive dissemination plan is proposed with a dual emphasis on meeting stakeholders' needs at multiple levels. The evaluation and research teams will emphasize publication in peer reviewed journals and presentations at conferences for informal science education professionals. Findings will be shared with the Fuller Park community stakeholders using creative methods such as one-page research briefs written in layperson's language, videos, and recorded interviews with participants. The local project Advisory Board will also be actively involved in the dissemination of findings to community constituents. The SCIENCES National Amplification Network will be created and work collaboratively with the American Association of Zoos and Aquariums and the Metropolitan Green Spaces Alliance to disseminate the model. Collectively, the activities and deliverables outlined in this proposal will advance the discovery of sustainable models of community-based learning while the research will advance the understanding of informal learning support for science literacy and agency.
Most students who pursue math have chosen to do so by high school. Elementary and middle school experiences are thus vitally important in attracting students to STEM. Research consistently points to after-school as a golden opportunity to increase students' exposure to high-quality math learning opportunities and to develop the key influencers of math participation and persistence: interest and identity. However, more research on how and under what conditions after-school programs can foster these factors is needed. The role of identity in math education has been particularly neglected. The proposed research project addresses this gap by studying the implementation and outcomes of After-School Math PLUS (ASM+), an after-school math program designed to address all aspects of math identity and thus have a positive effect on this key influencer of math participation and achievement. "Improving Math Identity" is a Research-in-Service to Practice project funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The team will study the impact of ASM+ through a rigorous randomized controlled trial of 30 elementary-level after-school sites in South Carolina serving predominately low-income and minority students (15 treatment using ASM+; 15 control using Mixing in Math). Sites selected into the study must serve fourth and fifth graders and must operate five days a week. Through an implementation study, data will be collected in order to assess the program and understand the experiences of group leaders and students in the ASM+ program and at comparison sites. Data sources include surveys, interviews, observations, and administrative data collected from the treatment and control sites. The study will investigate how and to what extent ASM+ develops fourth and fifth grade students' math identity and increases math engagement and interest. It will explore whether increasing identity, engagement, and interest leads to greater skill development and academic achievement. This research is being conducted by IMPAQ International LLC, a social science and public policy research and evaluation firm in collaboration with Educational Equity at FHI 360, a global development and education organization. The research addresses the need to enhance students' math identity at an early age and, as a result, change students' educational and career aspirations. The ultimate goal is to broaden participation in STEM by underrepresented groups. Results will inform the development of interventions designed to motivate and retain students in STEM, particularly in informal settings. Knowledge gained from this research will be broadly disseminated to practitioners, researchers, program developers, and policy makers.
DATE:
-
TEAM MEMBERS:
Cheri FancsaliMerle FroschlBarbara Sprung
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
This project engages members of racially and economically diverse communities in identifying and carrying out environmental projects that are meaningful to their lives, and adapts technology known as NatureNet to assist them. NatureNet, which encompasses a cell phone app, a multi-user, touch-based tabletop display and a web-based community, was developed with prior NSF support. Core participants involved in programs of the Anacostia Watershed Society in Washington, D.C., and Maryland, and the Reedy Creek Nature Preserve in Charlotte, NC, will work with naturalists, educators, and technology specialists to ask scientific questions and form hypotheses related to urban waterway restoration and preservation of native species. They will then collect and analyze data using NatureNet, requesting changes to the technology to customize it as needed for their projects. Casual visitors to the nature centers will be able to interact with the environmental projects via the tabletop, and those who live farther away will be able to participate more peripherally via the online community. The research project, led by researchers from the University of Maryland, College Park, with collaborators from the University of North Carolina, Charlotte, and the University of Colorado, Boulder, will provide answers to two questions: 1) How do community-driven informal environmental learning projects impact participants, including their motivation to actively participate in science issues via technology and their disposition toward nature preserves and scientific inquiry? and 2) What are the key factors (e.g., demographic composition of participants, geographical location) that influence the development of community-driven environmental projects? Researchers will gather extensive qualitative and quantitative data to understand how community projects are selected and carried out, how participants approach technology use and adaptation, and how informal learning and engagement on STEM-related issues can be fostered over a period of several months and through iterative project cycles. Data will be collected through motivation questionnaires; focus groups; interviews; tabletop, mobile, and website interaction logs; field notes from participatory design and reflection sessions; and project journals kept by nature preserve staff. Through extensive research, iterative design, and evaluation efforts, researchers will develop an innovative model for community-driven environmental projects that will deepen informal science education by demonstrating how members of diverse communities connect environmental knowledge and scientific inquiry skills to the practices, values, and goals of their communities, and how technology can be used to facilitate such connections.
DATE:
-
TEAM MEMBERS:
Tom YehMary Lou MaherJennifer PreeceTamara CleggCarol Boston