This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project engages members of racially and economically diverse communities in identifying and carrying out environmental projects that are meaningful to their lives, and adapts technology known as NatureNet to assist them. NatureNet, encompassing a cell phone app, a multi-user, touch-based tabletop display and a web-based community, was developed with prior NSF support.
The Richmond Public Library will create The Richmond Digital Health Literacy Project to provide low-income residents with tools and skills needed to access online information to improve their health. Participants will learn how to gain access to digital reference materials, e-books, mobile library offerings, and other resources. The project will bring together groups of participants around the topic of health information to develop customized online health curricula, provide training to 180 low-income residents in digital health literacy, and supply free broadband and wireless antennae to public computer centers. These activities will enable participants to develop skills and access relevant digital content to improve the health and the overall quality of life of Richmond residents.
Informal environments provide students with unique experiences that allow them to actively participate in activities while promoting a positive attitude toward and an increased interest in science. One way to enhance informal science experiences is through the integration of mobile technologies. This integration is particularly useful in engaging underrepresented students in learning science. Our informal environmental science program engages underrepresented, fifth-grade students in an informal learning environment supplemented with mobile tablet technology (iPads). The purpose of this study
The purposes of the STUDIO 3D evaluation were to collect information about the impact upon student learning as a result of participating in the STUDIO 3D Project, as well as to elicit information for program improvement. Areas of inquiry include recruiting and retention, impact on project participants, tracking student impacts, and the project as a whole.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help in envisioning the next generation of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that showed the possibilities of the proposed new type of learning technology, and project teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and answer questions about how people learn with technology. Although for years researchers have believed technology could afford anytime-anywhere learning, we still don't understand how learners behave differently across contexts, such as home, school, and in the community, and how to get youth to identify as learners across those contexts. This proposal aims to use mobile devices and strategically placed shared kiosks to 'scientize' youth in two low-income communities. Through strategic partnerships with community organizations, educators, and families, the innovation is to get primary and middle-school students engaging in scientific inquiry in the context of their neighborhoods. Research will help determine how the technology can best be deployed, but also answer important questions about how communities can provide support to help kids think like scientists and identify with science. This project will design and implement ubiquitous technology tools that include mobile social media and tangible, community displays (collectively called ScienceKit) that are deeply embedded into two urban neighborhoods, and demonstrate how such ubiquitous technologies and related cyberlearning strategies are vital to improve information flow and coordination across a neighborhood ecosystem, in order to create environments where children can connect their science learning across contexts and time (e.g. scientizing). A program called ScienceEverywhere comprised of partnerships between tightly connected neighborhood organizations with mentors, teachers, parents, and researchers will help learners develop scientifically literate practices both in and out of school, and will demonstrate students' learning to their communities. Research will consist of mixed methods studies of use of the tools, including iterative design-based research, ethnography, and the use of participant observers from the community; these will be triangulated with usage logs of the technologies and content analysis of microblogs by the learners on their identities and interests. Discourse analysis of interviews with focal learners will orient the qualitative work on identity development, and analysis using activity theory will inform the influences of the social practices and sociotechnical systems on learner trajectories. Formative evaluation will help shed light on if and how the sociotechnical system promotes STEM literacy and STEM identity development.
Based on the premise that one component of NASA's pre-college education program is intended to support and enact school reform, the Committee for the Evaluation and Review of NASA's Pre-College Education Program requested an analysis of how the NASA Explorer School (NES) Model aligns with other national models of school-wide improvement and reform. The purpose and focus of this paper is to summarize key elements of major school improvement and reform models as well as specific content reform models from the literature, and to analyze the extent to which there is alignment between these models
A youth media program called Youthscapes not only helps participants combat negative stereotypes of urban teens, but also gives them a sense of group solidarity that enables them to function as responsible media producers when they venture out into the community.
This article describes the Multimedia Arts Education Program (MAEP), an ongoing, intensive after school computer-mediated art technology program begun in 1996 by the Tucson Pima Arts Council (TPAC) in Tucson, Arizona. This five-semester program targets at-risk middle school youth from disadvantaged families. Students worked with professional artist/teachers, learning to do computer graphics and publishing, language arts and word processing, computer animation and video production.
Both scholarly literature and popular media often depict predominantly negative and one-dimensional images of boys, especially African-American boys. Predictions of these boys’ anticipated difficulties in school and adulthood are equally prevalent. This paper reports qualitative research that features case studies of nine urban boys of color, aged nine to eleven, who participated in an afterschool program where they learned to create digital multimedia texts. Drawing on an analysis of the children’s patterns of participation, their multimodal products, and their social and intellectual growth
DATE:
TEAM MEMBERS:
Glynda HullNora KenneyStacy MarpleAli Forsman-Schneider
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
The authors present an exploratory study of Black middle school boys who play digital games. The study was conducted through observations and interviews with Black American middle school boys about digital games as an informal learning experience. The first goal of the study is to understand the cultural context that Black students from economically disadvantaged inner-city neighborhoods bring to playing digital games. The second goal of the study is to examine how this cultural context affects the learning opportunities with games. Third, the authors examine how differences in game play are
DATE:
TEAM MEMBERS:
Betsy James DiSalvoKevin CrowleyRoy Norwood
The project DIG: Scientists in Alaska's Scenery will perform proof-of-concept on integrating a tourist's visit with place-based stories of meaningful science research in the Arctic. DIG (Digitally Integrated Guide) will widen the general public's interaction with the cultural and natural environment by allowing them to access Web sites and load their handheld mobile devices with engaging descriptions of research. Access can occur before, during, or after their visit - even if the visit takes them far from computers, electricity and the Internet. The creation of user-friendly access to technology and to scientists' stories will provide a new information tool for the public. For these tourists, or others interested in research in Alaska, opportunities to learn directly from the scientists themselves are almost non-existent. Moreover, tourists have no capability to link such research with places they visit. DIG's place-based outreach will be delivered using standard media (broadcast TV, publications) and social media (Web, facebook, twitter, etc.) and mobile devices. DIG demonstration project will join scientists, Alaska Native peoples, tourists, media makers, interpreters and technology experts in inquiry-based learning designed to maximize engagement by the general public. The radically different approach to Arctic-focused science documentary proposed here fosters the close collaboration of the scientist and media maker. Video podcasts (vodcasts) and supporting Web-based materials will be created for three current research projects in Alaska, with a focus on NSF-funded projects. Such projects include anthropology and cultural/linguistic study, paleontology, climate change research, biology, and other areas. Delivery and evaluation will emphasize tourists who visit, or are planning to visit, the National Parks of Alaska. These tourists are accessible to the research team, and they are motivated to seek out information about the places they are visiting. If successful, our approach to science education and outreach will augment their knowledge about research in Alaska, resulting in a deeper and more informed experience.
DATE:
-
TEAM MEMBERS:
Gregory NewbyLiz O'ConnellDeborah Perry