Skip to main content

Community Repository Search Results

resource research Public Programs
The making and tinkering movement has become increasingly mainstream over the past decade, pioneered in part through the popularity of magazines like `Make', events such as Maker Faire and DIY websites including `Instructables'. Science centres and museums have been developing their own ideas, notably the Tinkering Studio at the Exploratorium. In this commentary piece, we reflect on why this movement has a strong appeal for the Life Science Centre in Newcastle upon Tyne and why we are in the process of developing a new making and tinkering space to help us enact our centre's vision to `Enrich
DATE:
TEAM MEMBERS: Elin Roberts
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will develop and research, as a feasibility study, a series of art-inclusive, pop-up Science, Art, Technology, Engineering, and Mathematics (STEAM) makerspaces in a high-poverty, primarily rural county in Oklahoma. A makerspace is a collaborative work space inside a library, school or other community space for making, learning, exploring and sharing that uses high tech to low tech tools. The makerspaces will be temporary workshops that are developed through a community planning process that assesses the needs and interests of citizen stakeholders. Scientists, artists and other experts will work together with the community to design a series of thematic pop-up makerspace sessions. The project builds a collaborative infrastructure and capacity for small and rural communities by bringing together resource providers and experts to identify and design science-oriented challenges. Long-term benefits for participants include sustained focus on new approaches for civic engagement through STEAM-driven making which could foster new role identities pertaining to science and art. The project deliverables include: (1) a theoretically informed model to build a community's capacity to collaborate toward fostering civic engagement through science-oriented pop-up makerspaces, (2) Pop-Up STEAM Studio makerspaces, (3) training for pop-up facilitators, and (4) visual documentation panels and web-based digital stories to communicate progress and process.

Project research will enhance knowledge-building of the process of developing a science-oriented community challenge that embraces STEAM and making. A key contribution of the proposed project will be the generation of insights into how community members establish consensus around the joint goal of designing, documenting, and facilitating integrated art and science making activities to address and communicate the challenge. Research will focus on the roles participants take when engaging in the making process through an identity-based model of motivated action. Analysis of advisory board meeting artifacts and focus group data will allow the researchers to identify processes of negotiation and consensus building at the collective level and in relation to each issue to which the group attends. Emergent themes (such as negotiation, shared learning, idea or project revisions, diverse perspectives coming to consensus, etc.) will be examined across individual and group units of analysis, from all data sources, and through the congruent theoretical lenses of role identity theory and negotiated learning pedagogy. The research outcomes should inform efforts to build infrastructure and capacity of community resources by providing a model for developing collaborative pop-up makerspaces.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sheri Vasinda Joanna Garner Stephanie Hathcock Rebecca Brienen
resource project Public Programs
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will conduct a feasibility study of an informal youth STEM learning program. High school students from under served communities in New York City will use existing historical, cultural and environmental data to investigate selected UNESCO World Heritage sites. Participants will apply the skills and knowledge they have developed from their analysis of the UNESCO sites and apply them to their local communities. Participants will identify, map, and analyze their own community heritage sites, using relevant citizen science, environmental and cultural data. Throughout the program, the project will involve participants in maker-related activities. Participants will design devices to collect data, explore variables through model making, and communicate findings through models and artistic forms with the to spur both individual and community action for selected heritage sites.

The project will be implemented as a 9-month weekly after school program in Long Island City, New York. Most students from the school will be from low-income families and are youth of color. The research the question for the study is "How does access to STEM increase for historically underrepresented youth populations when culturally relevant curriculum connects citizen science and making practices?" During the first phase of the program, participants will engage with core STEM concepts and making/design processes through an engaging curriculum that explores damaged UNESCO World Heritage Sites. During the second phase, youth will identify, map, and plan enhancements for their own community heritage sites or environmental landmarks. A condensed version of the program will be piloted in the summer with youth from across the city. The Educational Development Corporation will conduct a process and summative evaluation of the project. Process evaluation, which will provide ongoing feedback to the project team, will include document review, observation of program implementation, and interviews with project partners. Summative evaluation will continue these methods, supplemented by pre- and post-participation participant surveys and focus-groups. Validated survey instruments, such as the Growth Mindset Scale, and the Common Instrument Suite (PEAR Institute) will be used. Resources from research and program practices will be disseminated through publications and conference presentations to the education research community, global learning and design fields, and practitioners from after school and other informal learning environments. Participants will share project results with their communities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
TEAM MEMBERS: Elizabeth Bishop Tracy Hogan
resource research Public Programs
The maker movement has evoked interest for its role in breaking down barriers to STEM learning. However, few empirical studies document how youth are supported over time, in STEM-rich making projects or their outcomes. This longitudinal critical ethnographic study traces the development of 41 youth maker projects in two community-centered making programs. Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto
DATE:
resource research Making and Tinkering Programs
This report, from the "Tinkering EU: Building Science Capital for All" project, provides a theoretical rationale for understanding the relationship between Tinkering as a pedagogical approach, students’ individual science capital, and inclusive STEM teaching approaches. By exploring the relationship between these three areas, it invites professionals to reflect on the ways in which Tinkering can be used a teaching tool for building science capital.
DATE:
TEAM MEMBERS: MARIA XANTHOUDAKI Emily Harris Mark Winterbottom
resource project Afterschool Programs
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).

Coordinator: National Museum of Science and Technology Leonardo da Vinci

Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource research Public Programs
Out-of-school settings promise to broaden participation in science to groups that are often left out of school-based opportunities. Increasing such involvement is premised on the notion that science is intricately tied to “the social, material, and personal well-being” of individuals, groups, and nations—indicators and aspirations that are deeply linked with understandings of equity, justice, and democracy. In this essay, the authors argue that dehistoricized and depoliticized meanings of equity, and the accompanying assumptions and goals of equity-oriented research and practice, threaten to
DATE:
TEAM MEMBERS: Thomas M. Philip Flávio S. Azevedo
resource project Making and Tinkering Programs
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.

ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE: -
TEAM MEMBERS: Shaik Jeelani Bruce Crawford Mohammed Qazi Jeffrey Gray Jacqueline Brooks
resource research Summer and Extended Camps
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS: Aaron Matthew Kyle Michael Carapezza Christine Kovich
resource project Public Programs
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of "making" have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. As part of a larger, long-range initiative in their local community, the New York Hall of Science proposes to leverage the philosophy and activities of the Maker movement to take important first steps toward realizing their eventual goal of developing family and community-wide commitment to and improvement of STEM education. The project would build both foundational and practical knowledge about how parents with little or no prior knowledge of or experience with Making choose to engage with, contribute to, and learn from Maker programming designed for families with children from low-income households and backgrounds that are under-represented in the STEM professions. The intent is to build their understanding of the value of Making as a pathway toward deeper STEM learning. The project is characterized as "high-risk with potentially high-payoff." It applies a community psychology approach (rather than individual psychology) to the study of Making, and it focuses on parents as potential learners and leaders. While some work has been done in the field with respect to the role of parents in Maker environments, this is a new approach to the study of Making and its potential influence on the broader culture of STEM learning in a community. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Two informal learning environments will be developed and studied at the New York Hall of Science: Learning Together, a table-top, minimally staff-facilitated setting in the Hall's science library, and Family Making, a high-tech and staff-facilitated experience in the Hall's maker facility. The study poses two research questions: (1) How, and to what extent, do the Learning Together and Family Making programs attract and sustain parental engagement, parental facilitation of children's activity, and parents' own explorations of Making? (2) From a community psychology perspective, what social structures, resources, social processes, and surrounding institutional conditions support or impede these parental pathways into exploring and understanding Making as a pathway toward STEM learning? The study will involve sustained collaborations between the Hall's Maker Space staff and research team, and will seek to generate guidance about how to design Maker programming that attracts and retains low-income, under-served family groups and new knowledge about how external structures and practices shape this audiences' perceptions of and interest in Making as a mode of STEM learning.
DATE: -
TEAM MEMBERS: Katherine McMillan David Wells Susan Letourneau
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton Edna Tan
resource research Media and Technology
Ideas from social justice can help us understand how equity issues are woven through out-of-school science learning practices. In this paper, I outline how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. I apply these ideas to out-of-school science learning via television, science clubs and maker spaces, looking at research as well as illustrative examples to see how equity challenges are being addressed in practice. I argue that out-of-school science
DATE:
TEAM MEMBERS: emily dawson