Climate change presents a significant challenge for parents worldwide as they navigate the task of preparing the next generation for a rapidly changing world. This interdisciplinary project aims to address this challenge by focusing on the needs of under-resourced Latino families, with a particular emphasis on Latino children who bear a disproportionate burden from climatic changes.
To advance justice, equity, diversity, and inclusion in science, we must first understand and improve the dominant-culture frameworks that impede progress and, second, we must intentionally create more equitable models. The present authors call ourselves the ICBOs and Allies Workgroup (ICBOs stands for independent community-based organizations), and we represent communities historically excluded from the sciences. Together with institutional allies and advisors, we began our research because we wanted our voices to be heard, and we hoped to bring a different perspective to doing science with
DATE:
TEAM MEMBERS:
María Cecilia Alvarez RicaldeJuan Flores ValadezCatherine CrumJohn AnnoniRick BonneyMateo Luna CastelliMarilú López FrettsBrigid LuceyKaren PurcellJ. Marcelo BontaPatricia CampbellMakeda CheatomBerenice RodriguezYao Augustine FoliJosé GonzálezJosé Miguel Hernández HurtadoSister Sharon HoraceKaren KitchenPepe Marcos-IgaTanya SchuhPhyllis Edwards TurnerBobby WilsonFanny Villarreal
Two critical challenges in science education are how to engage students in the practices of science and how to develop and sustain interest. The goal of this study was to examine the extent to which high school youth, the majority of whom are members of racial and ethnic groups historically underrepresented in STEM, learn the skills and practices of science and in turn develop interest in conducting scientific research as part of their career pursuits. To accomplish this goal, we applied Hidi and Renninger’s well-tested theoretical framework for studying interest development in the context of
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.
Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.
This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE:
-
TEAM MEMBERS:
Patricia TownsendRoslynn McCannMelissa KreyeArthur Nash
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.
This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
We characterize the factors that determine who becomes an inventor in the United States, focusing on the role of inventive ability (“nature”) vs. environment (“nurture”). Using deidentified data on 1.2 million inventors from patent records linked to tax records, we first show that children’s chances of becoming inventors vary sharply with characteristics at birth, such as their race, gender, and parents’ socioeconomic class. For example, children from high-income (top 1%) families are ten times as likely to become inventors as those from below-median income families. These gaps persist even
DATE:
TEAM MEMBERS:
Alex BellRaj ChettyXavier JaravelNeviana PetkovaJohn Van Reenen
Many people are under-served by existing informal science learning (ISL) provisions and under-represented in STEAM (Science, Technology, Engineering, Arts, Mathematics/Medicine) study choices and careers. This paper reflects upon SMASHfestUK which was established, as both a STEAM festival and research platform, to explore methods and approaches for lowering the barriers to engagement with ISL in marginalised communities. To do this SMASHfestUK located its events in the heart of communities and worked with these communities to create those events. This paper tells their story through the voices
This article describes an example of science engagement striving for social justice by invigorating neglected spaces. The pop-up science centre “Knowledge◦Room“ in Vienna encourages learning, participation and engagement and provides accessibility to different groups regardless of their background. Based on a case-study of a bottom-up event at the Knowledge◦Room, we show how science communication can create a trust-based connection with disadvantaged groups in society and inspire their curiosity in science. We argue that science communication can be used as a tool for advancing social justice
Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and identify three groups of underserved counties based on the interaction between population density and poverty percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in areas with the fewest sites for informal
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Tino NyaweloJohn MatthewsJordan GertonSarah Braden