Consumer Reports Television will produce a series of four half- hour TV specials and companion outreach materials, called "YOU TEST IT|," for public television broadcast and broad educational and home video distribution. Targeted for children ages 7 to 13 -- particularly those from low-income, minority families -- the project will draw on the resources of Consumers Union, the non- profit, scientific, research and education organization that publishes Consumer Reports magazine and ZILLIONS, the Consumer Reports for Kids. The "YOU TEST IT| series, created by an experienced team of children's TV producers, focuses on testing and evaluating popular products -- from observing the bubble-power of bubble gum to measuring the efficiency of 10-speed bicycles. Using lively, state-of-the-art techniques appealing to kids, "YOU TEST IT|" will encourage children to use science and math skills to investigate and, ultimately, solve real-world problems. Each of the 4 programs will cover a broad product theme such as Foods/Snacks, Toys/Games, Sports/Recreation, and Electronic Gear. Activity Guides, expanding on these topics, will delve more deeply into the science content of each show, providing hands-on learning materials for children. With repeated broadcasts of "YOU TEST IT|" over hundreds of PBS stations, and reuse of tape and print materials, millions of children will gain greater access to objective product information and greater awareness of science and its importance in everyday life.
DATE:
-
TEAM MEMBERS:
Joyce NewmanEdward GrothSusan Markowitz
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE:
-
TEAM MEMBERS:
Neil HutzlerEric IversenChristine CunninghamJoan ChaddeDavid Heil
The Maryland Science Center has received a SEPA grant to develop an exhibition, intern program and web site focusing on cell biology and stem cell research. The working title of the exhibition is Cellular Universe. The exhibit is intended to serve the following audiences: Families with children age nine and older; School groups (grades four and up); Adults; 9th grade underserved high school students in three local schools and/or community centers. Topics the exhibit will treat include: Structure and function of cells; Stem cells and their potential, the controversy surrounding stem cell
Voyage of Discovery is a comprehensive and innovative project designed to provide K-12 youth in Baltimore City with an introduction to mathematics, engineering, technology, environmental science, and computer and information science, as it relates to the maritime and aerospace industries. The Sankofa Institute, in partnership with the Living Classrooms Foundation and a host of marine, informal science, community, and educational organizations, collaborate to make science relevant for inner-city youth by infusing science across the curriculum and by addressing aspects of history and culture. Youth are introduced to historical, current, and future innovations in shipbuilding as a means to learn the science, mathematics, and history associated with navigation, transportation, environmental science, and shipping. Activities will take place at the Frederick Douglass-Isaac Myers Maritime Park and Museum where students participate in intensive afterschool, Saturday, and summer sessions. Families are invited for pre-session orientation meetings and again at the end of each session to observe student progress. This project will provide over 3,900 K-12 youth with the opportunity to learn mathematics (algebra, geometry, and trigonometry), physics (gravity, density, mechanics), design, and estuarine biology while participating in hands-on sessions. Project deliverables include a 26-foot wooden boat, a working model of a dirigible, a submarine model, and pilot control panel models, all constructed by students and subsequently incorporated into exhibits at the USS Constellation Museum. The project also results in the production of two curricula--one each on celestial navigation and propulsion. Voyage of Discovery informs the literature on inquiry-based informal science education programs and strategies to engage minority and low-income youth in learning science and technology.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This research project leverages ongoing longitudinal research to investigate whether, and if so how, youth from ages 10 to 15 in a diverse, under-resourced urban community become interested and engaged in STEM. The project addresses a global issue; fewer youth choose to major in scientific fields or take science coursework at high school or university levels. These declining numbers result in fewer STEM professionals and fewer scientifically literate citizens who are able to function successfully in an increasingly scientific and technological society. These declines are observed for youth as a whole, but are most pronounced for girls and particular non-white ethnic minorities. Data collected from youth in this community of study, including non-white ethnic minorities, mirrors this decline. NSF funding will support a five-year systematic and systemic process in which project researchers work collaboratively with existing informal and formal educational partners (e.g., museums, libraries, afterschool providers, schools) to develop sets of customized, connected, and coordinated learning interventions, in and out of school, for youth with different backgrounds, needs, and interests, all with the goal of averting or dampening this decline of STEM interest and participation during early adolescence. In addition to new research and community STEM networks, this project will result in a Community Toolkit that includes research instruments and documentation of network-building strategies for use by other researchers and practitioners nationally and internationally. This mixed methods exploratory study has two distinct but interrelated populations - youth and educators from across informal and formal institutions. To develop a clearer understanding of the factors that influence youths' STEM interest development over time, particularly among three youth STEM Interest Profiles identified in a secondary analysis (1-Dislike Math, 2-Like all STEM, 3-Dislike all STEM), the design combines surveys with in-depth interviews and observations. To study educators and institutions, researchers will combine interviews, focus groups, and observations to better understand factors that influence community-wide, data-driven approaches to supporting youth interest development. Research will be conducted in three phases with the goal of community-level change in youth STEM interest and participation. In Phase 1 (Years 1 & 2) four educational partners will develop interventions for a 6th and 7th grade youth cohort that will be iteratively refined through a design-based approach. Educational partners and researchers will meet to review and discuss interest and participation data and use these data to select content, as well as plan activities and strategies within their programs (using a simplified form of conjecture mapping). By Phase 2 (Years 3 & 4) four additional partners will be included, more closely modeling the complex system of the community. With support from researchers support and existing partners, new educational partners will similarly review and discuss data, using these to select content, as well as plan activities consistent with program goals and strategies. Additional interventions will be implemented by the new partners and further assessed and refined with a new 6th and 7th grade cohort, along with the existing interventions of the first four partners. In Phase 3 (Year 5) data will be collected on pre-post community-level changes in STEM interest and participation and the perceived effectiveness of this approach for youth. These data will inform future studies.
This article investigates the development of agency in science among low-income urban youth aged 10 to 14 as they participated in a voluntary year-round program on green energy technologies conducted at a local community club in a midwestern city. Focusing on how youth engaged a summer unit on understanding and modeling the relationship between energy use and the health of the urban environment, we use ethnographic data to discuss how the youth asserted themselves as community science experts in ways that took up and broke down the contradictory roles of being a producer and a critic of
EdVenture Children's Museum, a hands-on, children's museum in Columbia, S.C., in close collaboration with NIH-funded researchers at the University of South Carolina, proposes a five-year, SEPA project titled "Unlocking the Mysteries of Chronic Diseases: BioInvestigations for Family, School and Youth Audiences." The program will develop teaching laboratories and experiments to educate youth ages 5-14, teens and adults about biomedical science topics in a fun, investigatory way. From these laboratory experiences, EdVenture will also develop educational programs designed to engage disadvantaged audiences in schools and communities to help expose them to the world of science and the benefits of community-based translational research. The laboratories and educational programs will utilize scientific content drawn from NIH-sponsored biomedical research, and will translate the research process and public impact into meaningful experiences for the public. These programs will reach a large population, both urban and rural, in socio-economically depressed areas of the state, promoting students' interest in topics that they may not otherwise be exposed to and encouraging a lifelong familiarity and facility with scientific thought and practice. Throughout the life expectancy of this project, a projected 2.5 million children and adults will experience the laboratories and related educational programs. Long-term goals are to encourage future biomedical science career choices, and most importantly, empower a child to take control over his/her own health decisions and to develop the necessary skills to navigate the flood of health information inherent in the quickly changing landscape that is health today.
University of California, Berkeley's Lawrence Hall of Science (LHS), in partnership with the Children's Hospital and Research Center Oakland (CHRCO), proposes to design, develop, implement, and evaluate a hospital-based educational program using pedagogically rich mobile learning experiences with age-appropriate K-12 health sciences content. LHS staff will combine educational technology, curriculum, and learning research expertise to create a new, inquiry based health science program delivered through tablet computers or PlayPads. The interactive media, digital stories, and gaming on PlayPads will feature everyday concepts and important foundations in health education based on the science content and learning frameworks from successful science curricula created at LHS. Hospital patients and their families, visitors, staff, and volunteers will encounter PlayPads with finished waiting room exhibit media stations designed and constructed by Exploratorium Exhibit Services, on teaching carts deployed by hospital educators, and through individual check-out units. PlayPads content will also be available outside of the hospital setting through the Internet for extended use on personal mobile devices and computers. The mission of the PlayPads program is to increase exposure of the hospital-going public to topics directly relevant to healthy lives and families through mobile technology. PlayPads will be an inviting experience for youth, framing interactions with driving questions and common misconceptions to inspire the curiosity of participants. Youth ages 8 to 16 will experience wide-ranging interactives including: games that show the hazards of smoking, simulations of blood flow through the heart, brain quizzes to hone memory function, or lively info-graphics about the nutritional shortcomings of junk food. Given the recent strides in the affordability of touch screen technology and the rapid adoption of mobile computing ecosystems, this is an unprecedented time to build a ubiquitous health educational program within a contextually relevant environment like a hospital. PlayPads will be a model for delivering health education content in a unique educational setting leveraging the great strides in consumer mobile technology. By working with a strong, local hospital partner that serves a highly diverse ethnic and socioeconomic population, LHS staff will ensure the portability of the program for future healthcare providers. With the extensive private and public networks of both LHS and CHRCO, PlayPads will potentially have a lasting impact on health education efforts in the San Francisco Bay Area and beyond.
Goals: 1) Increase the number of Alaskans from educationally and/or economically disadvantaged backgrounds, particularly Alaska Natives, who pursue careers in health sciences and health professions and 2) Inform the Alaskan public about health science research and the clinical trial process so that they are better equipped to make healthier lifestyle choices and better understand the aims and benefits of clinical research. Objectives: 1) Pre-med Summer Enrichment program (U-DOC) at UAA (pipeline into college), 2) Statewide Alaska Student Scientist Corps for U-DOC, 3) students (pipeline into college), 4) Facility-based Student Science Guide program at Imaginarium Science Discovery Center, 5) Job Shadowing/Mentorship Program for U-DOC students and biomedical researchers, 6) Research-based and student-led exhibit, demonstration, and multi-media presentations, 7) Professional Development for educators, 8) North Star Website.
KY-H.E.R.O.S. (Health Education Rural Outreach Scientists) is a health science education program that partners the largest science center in Kentucky with Science Heroes-- important regional biomedical research scientists. The Science Heroes, their stories and their studies serve as inspiration to our rural audience. The project objectives are to: (1) Convey the relevance of health science research to people's daily lives and promote awareness of healthy lifestyle choices and wellness; (2) Promote understanding of the fundamental principles of the scientifc process and inspire K-12 teachers to incorporate current research into their teaching of health science; and (3) Encourage students to pursue advanced science education and increase awareness of the wide range of health science related careers. The Science Center, working with the distinguished Science Heroes, their research teams and a group of 15 knowledgeable professional advisors will develop the new KY-H.E.R.O.S. science education program. The program will include new hands-on labs and demonstrations, teacher training workshops, career exploration activities, interactive videoconferencing distance learning links, and innovative public programs. Using museum-based exhibits and a wet lab, traveling exhibit components, telelinking (distance learning), an interactive website and printed and electronic materials, we will present information about the work of the Science Heroes and its relevance to the lives of participants. The focus of the program will change every two years to feature three different scientists and their work. A total of nine scientists will be included during the 5 year period covered by the SEPA grant. As the focus changes every two years to a different three scientists, all the programs and exhibits will be changed accordingly. KY-H.E.R.O.S. will be designed to serve audiences composed of school groups on field trips; teachers in workshops; classes in remote areas of the state participatng through videoconferencing; underserved groups including economically disadvantaged, minorities and young women; and the family audience that makes up about 60% of the Science Center's annual attendance. Formative and summative evaluation will be conducted by an outside firm to ensure effectiveness.
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
This paper, commissioned as part of a consensus study on successful out-of-school STEM learning from the National Research Council's Board on Science Education, explores evidence-based strategies developed in out-of-school time STEM programs for successfully engaging youth from underrepresented demographics in STEM learning.