Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Artificial Intelligence (AI), the research and development of machines to mimic human thought and behavior, encompasses one of the most complex scientific and engineering challenges in history. AI now permeates essentially all sectors of the economy and society. Young people growing up in the era of big data, algorithms, and AI need to develop new awareness, content knowledge, and skills to understand humans’ relationships with these new technologies and become producers of AI artifacts themselves. YR Media and MIT’s Understanding AI project researched and developed innovative approaches to
DATE:
resource project Public Programs
Community Partnerships in STEM — a project of the Sciencenter and partners Downtown Ithaca Children’s Center and My Brother’s Keeper Ithaca — will expand opportunities for local youth from low-income households to engage with science, technology, engineering, and math (STEM) through hands-on programming. Sciencenter and its partners will co-develop relevant, accessible, and inclusive programs for youth and deliver the programs at the museum and at partner locations. As a result of this project, local youth from low-income households will come to see science as a process for learning about the world through experimentation and exploration that is relevant to their everyday lives.
DATE: -
TEAM MEMBERS: Michelle Kortenaar
resource project Public Programs
The Key West Tropical Forest and Botanical Garden will strengthen and expand its “Living Laboratory,” a hands-on outdoor youth environmental education program. New curricula will target students in preschool through 6th grade to expand the reach of the program. Additional programming will serve students in middle school and high school, including facilitating guided research projects for students in the district STEM Fair. Partnerships with local organizations will help to expand inclusive programming for at-risk and economically disadvantaged students and make the program free. They will use student-created videos of their experiments and activities to create multimedia online tutorial resources for educators.
DATE: -
TEAM MEMBERS: Robin Sarabia
resource project Media and Technology
Despite decades of policies and programs meant to increase the representation of girls and women in science, technology, engineering, and mathematics (STEM), girls and women of color still represent a much smaller percent of the STEM workforce than they do in the US population. This lack of representation is preventing the US STEM workforce from reaching its true potential. Intersecting inequalities of gender, race, ethnicity, and class, along with stereotypes associated with who is successful in STEM (i.e., White men), lead to perceptions that they do not belong and may not succeed in STEM. Ultimately, these issues hinder girls’ STEM identity development (i.e., sense of belonging and future success), lead to a crisis of representation for women of color and have compounding impacts on the STEM workforce. Research suggests there are positive impacts of in-person STEM learning after-school and out-of-school time programs on girls’ sense of belonging. The increasing need for online learning initiated by the COVID-19 pandemic means it is vital to investigate girls’ STEM identity development within an online community. Thus, the project will refine and test approaches in online learning communities to make a valuable impact on the STEM identity development of girls of color by 1) training educators and role models on exemplary approaches for STEM identity development; 2) implementing a collaborative, girl-focused Brite Online Learning Community that brings together 400 girls ages 13-16 from a minimum of 10 sites across the United States; and 3) researching the impact of the three core approaches -- community building, authentic and competence-demonstrating hands-on activities, and interactive learning with women role models -- on participating girls’ STEM identities in online settings.

The mixed methods study is guided by guided by Carlone & Johnson’s model of STEM identity involving four constructs: competence, performance, recognition, and sense of belonging. Data collection sources for the quantitative portion of the project include pre- and post-surveys, while qualitative data sources will be collected from six case study sites and will include observations, focus group interviews with girls, artifacts created by girls and educators, educator interviews, and open-ended survey responses. This approach will enable the research team to determine how and the extent to which the Brite Online Learning Community influences STEM identity constructs, interpreting which practices lead to meaningful outcomes that can be linked to the development of STEM identity for participating girls in an online environment. The products of this work will include research-based, tested Brite Practices and a toolkit for fostering girls’ interest, identification, and long-term participation in STEM. The resulting products will increase the reach of informal STEM education programming to girls of color across the nation as online spaces can reach more girls, potentially increasing the representation of women of color in the STEM workforce.
DATE: -
TEAM MEMBERS: Roxanne Hughes Karen Peterson Abimbola Olukeye Qian Zhang
resource project Exhibitions
Artificial intelligence (AI) is in many of our everyday activities—from unlocking phones to running Internet searches to parking cars. Yet, most instruction on how AI works is only in computer science courses. The unique role that AI plays in making decisions that affect human lives heightens the need for education approaches that promote public AI literacy. Little research has been done to understand how we can best teach AI in informal learning spaces. This project will engage middle school age youth in learning abouts AI through interaction with museum exhibits in science and technology centers. The exhibits employ embodied interactions and creative making activities that involve textiles, music making, and interactive media. The research will build on three exhibit prototypes that teach about concepts including bias in data in machine learning, AI decision-making processes, and how AI represents knowledge. Female-identifying and Title 1 youth will be recruited as participants during the exhibit design iterations and testing. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments

Researchers will explore two key research questions: 1) How can the design of interactive museum exhibits encourage interest development in and learning about AI among learners without a Computer Science background by using embodiment and creative making? and 2) How do embodied interaction and creative making mediate learning about AI in informal learning environments? The project will take a design-based research approach, iteratively building on existing exhibit prototypes and testing them in-situ with learners. Data sources and modes of analysis will include retrospective surveys to assess interest, content knowledge gain, creativity, learning talk analysis of audio recordings, and coding of embodied movements in video recordings. Learning talk analysis will identify instances of joint sensemaking during naturalistic interactions with our exhibit to reveal connections between sensemaking talk; learners' behaviors and embodied actions during real-time collaborative knowledge building; and outcomes in knowledge, interest, and creativity measures as elicited in retrospective surveys. The final set of exhibits will be rigorously evaluated with over 500 museum visitors. The key contributions of this work will include a set of rigorously tested exhibits, publicly available exhibit designs, a set of design guidelines for developing AI literacy museum exhibits, and an improved understanding of the relationship between AI-related learning and interest development, embodiment, and creativity.
DATE: -
TEAM MEMBERS: Brian Magerko Duri Long Jessica Roberts
resource evaluation Media and Technology
In 2019, the Advancing Informal STEM Learning program at the National Science Foundation funded the Advancing Ocean Science Literacy through Immersive Virtual Reality project, a pilot/feasibility and collaborative research project between The Hydrous and the Virtual Human Interaction Lab (VHIL) at Stanford University designed to investigate how immersive virtual reality using head mounted displays can enhance ocean literacy and generate empathy towards environmental issues, particularly among high school girls from different socio-economic backgrounds. The Hydrous was responsible for designing
DATE:
TEAM MEMBERS: Becky Carroll Pam Tambe
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
resource project Public Programs
Environmental Protectors is a four-year project based at the University of California at Berkeley’s Lawrence Hall of Science. The project is designed to explore the educational and developmental impact of an informal science education programming model that features Community and Citizen Science (CCS) activities for youth of color residing in urban communities. The project is grounded in hypothesis that CCS-focused experiences result in learning outcomes that better position youth of color to more effectively engage in Science, Technology, Engineering, and Mathematics (STEM) related educational, occupational, and civic activities. Each year, in three economically challenged urban communities located throughout the country, youth of color between the ages of 14 and 18 will participate in month-long summer or semester-long afterschool programs. These programs will feature CCS-related activities that include collection, analysis, interpretation and presentation of data that addresses local, pressing environmental quality concerns, such as soil lead contamination and air particulate matter pollution. The project will use a mix of qualitative and quantitative data collection and analysis to assess the impact of youth engagement in these CCS activities. Overall, through its implementation the project aims to generate information useful in nationwide efforts designed to identify effective strategies and approaches that contribute to increasing STEM understanding and interest among youth of color.

Project research is guided by the following questions: A) What are ways to increase STEM engagement among those who have typically been underrepresented in Community and Citizen Science (CCS) research projects in particular and STEM in general? B) When youth are engaged in CCS, what outcomes are observed related to their science agency and science activism? What other unanticipated outcomes are observed related to benefits of participation and learning? C) How does science activism develop in youth participating in CCS?; and D) How do differences in program implementation impact youth outcomes. In particular, the project explores the manner in which particular CCS activities (e.g., project design, data analysis and interpretation, data presentation) impact youth “Science Agency,” defined as a combination of constructs that include Science Identity (i.e., sense of themselves as science thinkers), Science Value (i.e., awareness of the potential benefits of applying scientific practices to addressing critical community health and environmental issues) and Science Competency Beliefs (i.e., belief of themselves as competent science practitioners) and “Science Activism,” defined as a combination of perceived behavioral control and personal salience. Through its execution the project will refine a theory of learning that makes explicit connections between these constructs. Information derived from the execution of the project will contribute to deeper understanding of the potential for using of CCS projects as a key component of science education environments in urban areas and in general.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kevin Cuff Mac Cannady Sarah Olsen
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

This project will create the specification for a learner-controlled system to represent youth learning in Out-of-School-Time (OST) settings, to improve access to future Science, Technology, Engineering, and Mathematics (STEM) learning opportunities. For learners to pursue a STEM education, and STEM careers, they must be able to move through "gatekeeping" mechanisms that filter and sort students based on factors such as prior coursework and grades, teacher recommendations, and language proficiency assessments. Even though abundant evidence shows that such measures fail to capture all important aspects of STEM learning, they are traditionally relied upon in secondary and post-secondary STEM education contexts as indicators of preparation for future STEM learning. These systemic processes exclude certain minoritized groups, including Black, Indigenous, and other people of color (BIPOC), low income, immigrant and refugee youth, and youth learning English, from high-quality secondary and post-secondary STEM learning experiences because existing measures do not validate their prior knowledge and experiences. Yet, minoritized youth often engage in OST STEM learning opportunities, where their readiness for future learning opportunities is nurtured and valued. One challenge is to reliably document this readiness in a usable format so youth can access new STEM learning opportunities, especially in post-secondary contexts. This project builds strategically upon earlier work focusing on the democratization of STEM learning through vehicles such as digital micro-credentials or badges, and upon digital portfolios. Missing from these earlier efforts was integration of these platforms with an infrastructure that connected youth learners to OST STEM learning organizations and to future STEM learning opportunities. This Innovations in Development project brings together minoritized youth and their families, OST providers, and admissions officials from higher education institutions to explore the needed design features for OST "transcripts," and user stories that describe how software systems can support their creation and sharing. Grounded in the concept of mastery-based learning, where learning is demonstrated via action, learners will control what is included in the transcript so that they create their own narratives about their learning experiences. Recognizing that documentation is not the key focus of most STEM OST organizations, this project will provide direct support for identifying and codifying learning goals or outcomes that learners and their families find relevant and important within different STEM activities. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The project will take a Design-Based Implementation Research (DBIR) approach and proceed by convening representatives from three main stakeholder groups (youth and their families, OST providers, and admissions staff) to engage in a series of discovery and design activities. Project partners, including the Mastery Transcript Consortium (MA), STEAMville (IL), STUDIO (WA), and Wolverine Pathways (MI), will work together with the PIs to design templates learners can use to characterize STEM learning from each provider, aligned with different STEM learning foci (e.g., computer science, computational thinking, cross-cutting concepts, science and engineering practices, and mathematics). Data collected from these sessions will be used to address the following research questions: (1) How and why do youth and families from minoritized communities understand and choose to participate in STEM OST learning opportunities?, (2) How do youth understand and interact with STEM OST learning opportunities?, (3) How do OST providers characterize the STEM learning goals in the activities they provide?, and (4) How do college admissions personnel view the role of informal STEM learning as part of a holistic admissions process? This work has the potential to further the understanding of how OST learning can be documented and shared as a part of the larger ecosystem of STEM learning trajectories. By deeply engaging the perspectives and voices of minoritized youth and families, this project seeks to develop a valid and trustworthy instrument that recognizes and serves their STEM learning, thus broadening the participation of minoritized youth in STEM education and careers. This work will also benefit OST providers, by translating the documentation of youth STEM learning into forms that may help communicate the efficacy of their programs in ways that further their missions, including communicating evidence of effectiveness to both future participants and funders.
DATE: -
TEAM MEMBERS: Barry Fishman Leslie Herrenkohl Katie Headrick Taylor Nichole Pinkard
resource project Media and Technology
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tino Nyawelo John Matthews Jordan Gerton Sarah Braden
resource project Public Programs
Makerspaces are learning environments that engage participants in authentic science and engineering practices, using hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Recently there has been a rapid growth of makerspaces in schools and in informal places like museums, libraries, and community centers. However, many of these spaces are not accessible to all members of society. This project will produce a model for a STEM makerspace that focuses on increasing access. The model has four critical components that operate together: affordable housing, informal STEM learning, maker education, and multi-generational learning. This project will develop and study the community-based, multigenerational makerspace model for Bayview Towers, a 200-unit affordable housing complex in Connecticut. The Multi-Gen STEM Makerspaces project brings together CAST, a non-profit education research organization, the NHP Foundation/Operation Pathways, a national affordable housing provider, and the Boston University Social Learning Lab, which researches the social context for STEM learning. The project will produce a Multi-Gen Maker Playbook comprised of an educational guide for a series of four-week workshops around different themes and modes of making. The Playbook will also serve as a program model that guides similar communities on how to create and run sustainable and thriving maker programs of their own. Families in the Bayview Towers community will build an understanding of science, technology, engineering, and mathematics (STEM) concepts through participation in an onsite makerspace. Families will relate what they are doing through making to longer-term goals connected to STEM learning, education, and careers. The project will also enable the engagement of individuals in the co-design (individuals provide creative contributions) of making that can be translated into community structures and values that support a sustainable makerspace. The affordable housing context will provide understanding of individual and other social factors that impact learners' sense of STEM identity. The project will support mobility from poverty by including STEM learning as part of the resident services.

The research will examine how low income communities access, engage, and learn in makerspaces, and relate their learning to relevant goals. The team will use design-based research (DBR) whereby participants and researchers work together to design interventions intended to explore theory through cycles of enactment, analysis, and revision. The DBR research will answer the following questions:


In what ways, if any, does the model support residents experiencing STEM learning as consequential?
What kind of making goals do residents set and how do they embed STEM in these goals?
If residents experience STEM learning as consequential through the workshops, do they also see the relationship between their making goals and longer term goals?
Do those residents that use the makerspace more frequently experience more positive outcomes in terms of consequential STEM learning?
How do the various makerspace structures - training of facilitators, dedicated space and equipment, Playbook - support the model?
Are groups of residents participating regularly in the makerspace and if so, who is in these groups? Do these groups start to identify as a maker community? Is the community finding the makerspace of value?
In what ways does the organization and operations of the makerspace support building a sustainable model for multigenerational and consequential learning?


Participants will include 90 youth and 90 adults from the resident community at Bayview Towers. Research data to be collected includes open-ended response measures for scoring residents' interpretation, analysis and understanding of each workshop elements. Also, interview protocols will be used to guide the refinement of the Multi-Gen Maker Playbook features and analyze usability, feasibility, engagement and user experience of the Multi-Gen Maker Playbook within the platform. The program will use semi-structured interview protocols on participants' goals and STEM identity and focus group protocols on community maker values and makerspace structures. Additionally, a Likert-style survey on STEM identity will also be adapted from the Science Identity Scale. Project evaluation will examine the overall achievement of program goals and objectives. Project results will be communicated by traditional means of dissemination to scholars and practitioners. The team will also create targeted digital media, including online articles, podcast interviews, and blog posts, to reach a broader audience.


This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Sam Catherine Johnston Kathleen Corriveau Jess Gropen Kim Ducharme Kenneth White
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham