Climate change presents a significant challenge for parents worldwide as they navigate the task of preparing the next generation for a rapidly changing world. This interdisciplinary project aims to address this challenge by focusing on the needs of under-resourced Latino families, with a particular emphasis on Latino children who bear a disproportionate burden from climatic changes.
Over the last year we have been able to take a few hours each week to step back from our current work, reflect on our assumptions, learn from others, and explore new ways that our research could both uncover and help dismantle inequities and racism in the STEM education system. This eBook, and the series of blog posts on which it is based, is the result of these conversations and this reflective process. Our goal is to explore the themes and ideas that emerged from the year and how these might fundamentally change the way we think about STEM, work with families and children, and conduct
Early learning experiences for children have the potential to make a lasting impression on a young person, and ultimately influence their interests, school trajectories, and professional careers. As such, there has been an increasing effort to understand what can make these experiences more or less productive for young people, particularly in science, technology, engineering, and mathematics fields that face ongoing challenges related to workforce development. A better understanding of what happens during and after early engineering activities - and in particular, what contributes to a productive and engaging experience for children between the ages of 3 and 5 - can inform the design of new activities and potentially catalyze greater interest and learning about engineering at a young age. This study seeks to add new knowledge in this area by exploring how and why different elements of engineering activities for young children might be more or less effective for early learners. In addition, the study also examines engagement and interest related to engineering at the family level, acknowledging the essential roles that parents and families play in the overall development of young children. Finally, this study includes a specific focus on low-income and Spanish-speaking families, thereby engaging with communities that historically have less access to early science and engineering learning opportunities and remain persistently underrepresented in these fields. In order to maximize the impact of this research, findings from this study will be shared broadly with parents, educators, and researchers from multiple fields such as engineering education, child development, and informal/out-of-school time education.
This study has the potential to have a transformative impact on engineering education by developing both educational products and conceptual frameworks that advance the field's knowledge of how to effectively engage young learners and their parents/caregivers in meaningful and productive engineering learning experiences. This study seeks to break new ground at the frontiers of early childhood engineering, specifically through a) articulating and refining a new integrated conceptual framework that weaves together theories of learning and development with theoretical constructs from engineering design and b) applying and refining this integrated framework when creating, implementing, assessing, and revising components of family-based engineering activities for early learners, particularly those from low-income and Spanish-speaking families. Unlike many other early childhood engineering programs, this project focuses on the family context, which is the primary driver of learning and interest development at this age. The study therefore provides an opportunity to advance the field by both helping young children build engineering skills and interests before starting kindergarten while also empowering parents to support their children's engineering education at a critical developmental period. Additionally, by enhancing parent-child interactions and supporting a range of early childhood development goals, this project will also contribute to efforts to decrease the persistent kindergarten readiness gap across racial, ethnic, and socioeconomic groups. The research ultimately supports efforts to increase the diversity of individuals who will potentially enter the engineering workforce.
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
It has been well documented that under-resourced Latinx communities face persistent barriers to accessing quality STEM education and STEM careers, particularly in the field of engineering. For young children and their families from these communities, the development of executive function skills offers promising pathways to support educational success and prepare children to engage with STEM practices and content. Executive function skills, such as focusing attention, retaining information, and managing emotions are critical for children’s development and long-term success, and have been identified as central to engagement with STEM practices and content, whether in or out of school. However, much of the work on development of executive function skills to date has been conducted with White, middle-class children and has largely ignored the knowledge, values, or perspectives of other communities, including Latinx families. Similar gaps also exist in attention to culturally responsive approaches to using family-based STEM activities to support executive function skills. Taken together, there is a critical need to work with Latinx communities to re-imagine the intersection of STEM learning and executive function skills using equity-based frameworks. This Pilot and Feasibility project will develop and test a new participatory, dialogic method that leverages informal family engineering activities to support the development of executive function skills for preschool-age children from Latinx families. The combination of this proposal’s unique engagement of parents as research partners with the study of engineering and executive functions could lay the foundation for a promising program of future equity-focused research.
Three research questions will guide the study: 1) What knowledge, assets, and practices already exist within Latinx families related to these executive function skills? 2) What aspects of executive function skills can be supported through informal family engineering activities? and 3) What are promising design strategies for adapting informal family engineering activities to highlight family assets and support executive function skills for young children? To address these questions, the project team will engage Latinx parents in a dialogue series in which parents are central collaborators, sharing their in-depth perspectives and partnering with researchers to develop conceptual frameworks and new approaches. Data generated through these ongoing discussions will be analyzed using (a) qualitative, participatory approaches, including iterative co-development and refinement of emergent themes with parents, (b) detailed inductive coding of parent dialogue group discussions using grounded theory techniques, and (c) retrospective analysis at the end of the project. The parent dialogue series will be supported by a systematic literature review examining the intersections between engineering design, executive function, and the strengths and assets within Latinx families. The results of the exploratory research will include a (1) conceptual framework co-developed with parents that highlights promising opportunities and design strategies for using family engineering design activities to support executive function skills for preschool-age children from Latinx families and (2) research agenda outlining questions and priorities for future work that reflect the goals and interests of this community. Aligned with project’s equity approach, the team will work collaboratively with project partners and families for dissemination, focusing on amplifying community voices, sharing challenges and successes, and supporting improvements in the local community. Results will also be broadly shared with educators and researchers to advance knowledge and promote new equitable approaches to collaborating with parents from Latinx communities.
This Pilots and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
Early childhood is a critical time for developing foundational knowledge, skills, and interest in science, technology, engineering, and mathematics (STEM). For that reason, the Public Broadcasting Service (PBS) places a great priority on developing early childhood STEM content, especially through its television shows that are watched by over 60% of young children in the United States. Research suggests that adding in-the-moment interaction to television watching promotes learning and engagement. Toward this end, researchers from the University of California, Irvine and PBS KIDS have prototyped interactive versions of science shows that children view on internet-connected devices while they communicate with the main character powered by an AI conversational agent. Pilot studies show that when children watch these new interactive videos with the main character pausing periodically to ask probing questions about the learning goals of the episode and following up with appropriate responses, they are more engaged and learn more about science, with heightened benefits for children who speak languages other than English at home. Based on these early results, in this Innovations in Development project the research team will develop, test and produce publicly available conversational episodes for two PBS KIDS television shows, one focused on science and the other on computational thinking.
The project will iteratively study and develop six conversational videos with novel forms of support for children, including extended back-and-forth conversation that builds upon a child's responses, visual scaffolding that facilitates verbal communication, and bilingual language processing so that children can answer in English or Spanish. The conversational videos will be evaluated in both lab-based and home settings. The lab-based study will involve 600 children ages 3-7 in a predominantly low-income Latino community in Southern California, in which researchers compare children’s learning and engagement when watching the conversational videos with three other formats: (1) watching the non-interactive broadcast version of the video; (2) watching the video with pseudo-interaction, in which the main character asks questions and gives a generic response after a fixed amount of time but can’t understand what the child says; or (3) watching the broadcast version of the video with a human co-viewer who pauses the video and asks questions. The home-based study will involve 80 families assigned to watch either the non-interactive or interactive videos as many times as they want over a month at home. In both the lab-based and home studies, pre- and post-tests will be used to examine the impact of video watching on science and language learning, and log data will be used to assess children’s verbalization and engagement while watching. Following the home study, the six videos will be further refined and made available for free to the public through the PBS KIDS apps and website, which are visited by more than 13 million users a month. Beyond providing engaging science learning opportunities to children throughout the country, this study will yield important insights into the design, usability, feasibility, and effectiveness of incorporating conversational agents into children’s STEM-oriented video content, with implications for extending this innovation to other educational media such as e-books, games, apps, and toys.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE:
-
TEAM MEMBERS:
Mark WarschauerSilvia LovatoAndres BustamanteAbby JenkinsYing Xu
Cyberchase: Mobile Adventures in STEM is designed to advance the STEM learning of children ages 6-8 and engage low-income families in informal STEM interactions. Based on a successful NSF-funded pilot, the project combines the appeal of the PBS KIDS series Cyberchase and the potential of mobile texting to deliver informal learning. WNET and Education Development Center will produce: three Cyberchase videos that blend math and environmental content; a bilingual family engagement campaign in 15 communities across the U.S. that combines this media with weekly text-based engagement; and research into use and impact of the model among low-income Latinx families. Mobile Adventures addresses the need to better engage underserved families in informal science practices that are foundational for future STEM learning. While the materials target low-income communities broadly, research will focus on low-income Latinx families with children ages 6-8, an age group overlooked in previous research on educational uses of texting. A needs assessment and formative testing will ensure that the project design meets the needs and interests of diverse Latinx and other families.
The goal of Mobile Adventures is to build knowledge about how innovative, culturally responsive tools can help Latinx and low-income families engage in fun STEM learning at home. A three-tiered research study will address the question: how and to what extent does a mobile text-and-media approach to delivering informal STEM learning materials foster joint media engagement between children and parents, building new repertoires for learning together? The study will combine analysis of observation in homes and community settings, backend data, and pre/post surveys. Research will deepen understanding of effective family engagement models that make media a central component, the potential of text messaging as a stimulus to parent/child STEM learning, and maximal design of media and community engagement to serve low-income Latinx families. Findings will be disseminated through national conferences and journals. The Cyberchase videos, distributed free on broadcast and digital platforms, will build the STEM literacy of millions of diverse children, while the family engagement campaign will involve a projected 3,750 families in 15 locations. Evaluation will assess how well the project has met its goals.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
Families play a vital role in supporting children’s informal science learning. Yet multiple studies have shown that Latinx families, particularly in neighborhoods with a high poverty rate, face many barriers to accessing informal science experiences and environments. Telenovelas, a type of television serial drama watched by Spanish-speaking audiences around the world, may provide an entryway to reaching these families. Prior research has shown that telenovelas can be an effective means of changing adults’ behavior, with potential cascading impacts on children. Education Development Center, Literacy Partners, and Univision will use a culturally responsive approach to broaden participation of Latinx families in informal science learning using La Fuerza de Creer, a popular Spanish-language telenovela that reaches 7 million U.S. viewers. The five-episode telenovela series will model positive informal science interactions between caregivers and their children and provide positive role models of Latinx scientists. The project team will then use the telenovela as the foundation for a five-session workshop series for caregivers to further explore how to engage in these informal science learning opportunities with their children. The La Fuerza-STEM project will build on families’ strengths and interests and tap their power—la fuerza—to engage children in exploring science. This research will examine the relationship between the telenovela/workshops and caregivers’ practices and attitudes towards science. La Fuerza-STEM seeks to expand informal science learning using a culturally grounded strategy to engage an under-served population that is historically under-represented in STEM.
The project will use an iterative research and design process that is guided by the input of both parent and scientific advisory boards. Front-end formative research with approximately 30 Latinx caregivers from under-resourced communities will explore their informal science practices. These experiences will then inform script development for the telenovela. A pre-post comparison group study with 200 caregivers will investigate how caregivers’ attitudes toward science might change as a result of viewing the telenovela. The project will then build a 5-session workshop series around the telenovela and these research findings. Finally, 300 caregivers will participate in a randomized controlled trial to examine the efficacy of the La Fuerza-STEM workshops on changing caregivers’ informal science attitudes and practices. Throughout, the project will address the overarching research question, How can a culturally relevant telenovela be used to improve Latinx caregivers’ science self-efficacy, career awareness, and informal science practices? Project findings and products will be publicly disseminated through publications, conference presentations, and local partner organizations, with an eye toward open access and data sharing. The project will generate knowledge about the effectiveness of embedding informal science content in a culturally-grounded medium—the telenovela—in improving caregivers’ confidence and competence to engage in informal science learning experiences with their children. With an anticipated audience of 7 million, the potential impact of the telenovela on caregivers’ informal science attitudes and practices is enormous. By implementing workshops with local organizations, the project aims to be self-sustaining, building the capacity of community partners to provide families with services targeting informal science knowledge and skills long after the grant has ended.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE:
-
TEAM MEMBERS:
Joy KennedyJessica YoungAlexia RaynalAnthony Tassi
The U.S. urgently needs the perspective and knowledge of females who are Latinx and African American in STEM fields. Providing early STEM interest pathways for these populations that are historically underrepresented in STEM fields is critical to creating gender equity in the STEM workforce. There are profound inequities in STEM fields for women of color that impact their interest and persistence in these fields. This Research in Service to Practice project will build important knowledge about early pathways for reducing these inequities by developing early interest in STEM. Gender stereotypes around who can do STEM are one of the sociocultural barriers that contributes to girls’ loss of interest in STEM. These stereotypes emerge early and steer young women away from STEM studies and pursuits. Exposing girls to role models is an effective strategy for challenging stereotypes of who belongs and succeeds in STEM. This project will explore how an afterschool program that combines narrative and storytelling approaches, STEM role models, and family supports, sparks elementary-age girls’ interest in STEM and fosters their STEM identity. The project targets K-5 students and families from underrepresented groups (e.g., Latinx and African American) living in poverty. The project will evaluate an inquiry-based, afterschool program that serves both elementary school girls and boys and explores if adding storytelling components to the out-of-school time (OST) learning will better support girls’ interest in STEM. The storytelling features include: 1) shared reading of books featuring females in STEM; 2) students’ own narratives that reminisce about their STEM experiences; and 3) video interviews of female parents and community members with STEM careers. A secondary aim of this project is to build capacity of schools and afterschool providers to deliver and sustain afterschool STEM enrichment experiences. Museum-based informal STEM experts will co-teach with afterschool providers to deliver the Children’s Museum Houston (CMH) curriculum called Afterschool Science, Technology, Engineering, Arts and Math (A’STEAM). Although A’STEAM has been implemented in over 100 sites and shows promise, to scale-up this and other promising afterschool programs, the team will evaluate how professional development resources and the co-facilitation approach can build afterschool educators' capacity to deliver the most promising approaches.
Researchers at the Children’s Learning Institute (CLI) at UTHealth will partner with Museum-based informal STEM educators at CMH, YES Prep, a high performing charter school serving >95% of underrepresented groups, and other afterschool providers serving mostly underrepresented groups experiencing poverty. Storytelling components that highlight females in STEM will be added to an existing afterschool program (A'STEAM Basic). This derivative program is called A’STEAM Stories. Both instantiations of the afterschool programs (Basic and Stories) include an afterschool educator component (ongoing professional development and coaching), a family component (e.g., home extension activities, in-person, and virtual family learning events), and two age-based groups (K-G2 and G3-G5). Further, the A’STEAM Stories professional development for educators includes training that challenges STEM gender stereotypes and explains how to make science interesting to girls. The 4-year project has four phases. In Phase 1, researchers, CMH, and afterschool educators will adapt the curriculum for scalability and the planned storytelling variation. During Phase 2, the research team will conduct an experimental study to evaluate program impacts on increasing STEM interest and identity and reducing STEM gender stereotypes. To this end, the project’s team will recruit 36 sites and 1200 children across Kindergarten through Grade 5. This experimental phase is designed to produce causal evidence and meet the highest standards for rigorous research. The researchers will randomly assign sites to one of three groups: control, A’STEAM Basic, or A’STEAM Stories. During Phase 3, researchers will follow-up with participating sites to understand if the inclusion of afterschool educators as co-facilitators of the program allowed for sustainability after Museum informal science educator support is withdrawn. In Phase 4, the team will disseminate the afterschool curriculum and conduct two training-of-trainers for local and national afterschool educators. This study uses quantitative and qualitative approaches. Data sources include educator and family surveys, focus groups, and interviews as well as observations of afterschool program instructional quality and analysis of parent-child discourse during a STEM task. Constructs assessed with children include STEM interest, STEM identity, and STEM gender stereotype endorsement as well as standardized measures of vocabulary, science, and math. Findings will increase understanding of how to optimize OST STEM experiences for elementary-age girls and how to strengthen STEM interest for all participants. Further, this project will advance our knowledge of the extent to which scaffolded, co-teaching approaches build capacity of afterschool providers to sustain inquiry-based STEM programs.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments.