Artificial Intelligence (AI), the research and development of machines to mimic human thought and behavior, encompasses one of the most complex scientific and engineering challenges in history. AI now permeates essentially all sectors of the economy and society. Young people growing up in the era of big data, algorithms, and AI need to develop new awareness, content knowledge, and skills to understand humans’ relationships with these new technologies and become producers of AI artifacts themselves.
YR Media and MIT’s Understanding AI project researched and developed innovative approaches to
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Collaborative robots – cobots – are designed to work with humans, not replace them. What learning affordances are created in educational games when learners program robots to assist them in a game instead of being the game? What game designs work best?
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS:
Jean RyooTiera TanksleyCynthia EstradaJane Margolis
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Tino NyaweloJohn MatthewsJordan GertonSarah Braden
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.
The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.
This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This RAPID was submitted in response to the NSF Dear Colleague letter related to the COVID-19 pandemic. This award is made by the AISL program in the Division of Research on Learning, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. Child development scientists have already warned of increasing stress levels among the U.S. child population, especially those in low-income families of color. In addition, Latino children are disproportionately impoverished, and benefit from culturally relevant information. Parents and caregivers need to be armed with effective science-based strategies to improve child prospects during this global crisis. Harnessing well-established partnership (including with local TV news partners and parent-serving organizations) strengthens the potential for broad impacts on the health and well-being of children and families during the COVID-19 pandemic. As the pandemic persists, widely disseminating accurate research-based strategies to support parents and families, with a focus on low-income Latino parents, is crucial to meeting the needs of the nation's most vulnerable during this global crisis. The award addresses this urgent need by producing research-based news videos on child development for distribution on broadcast television stations that reach low income Latino parents. The videos will communicate research-based recommendations regarding COVID-19 in ways that are relatable to Latino parents and lead to positive parenting during this pandemic. A "how to" video will also be produced showing parents how to implement some of the practices. Project partners include Abriendo Puertas, the largest U.S. parenting program serving low-income Latinos, and Ivanhoe Broadcasting.
Research questions include: 1) What information do parents need (and potentially what misinformation they are being exposed to)? 2) What are they sharing? 3) How does this vary geographically? 4) Can researchers detect differences in public engagement in geographic areas where TV stations air news videos as compared to areas that don't? This project will use data and communication science research strategies (e.g. natural language processing from online sites where parents are asking questions and sharing information) to inform the content of the videos and lead to the adoption of featured behaviors. Data from web searches, public Facebook pages, and Twitter posts will be used to gain a window into parents' main questions and concerns including information regarding hygiene, how to talk about the pandemic without frightening their children, or determining veracity of what they hear and see related to the pandemic.
This organic approach can detect concerns that parents may be unlikely to ask doctors or discuss in focus groups. Methodologically, the researchers will accomplish this by natural language analysis of the topics that parents raise; the words and phrases they use to talk about specific content; and any references to external sources of information. Where possible, the researchers will segment this analysis by geography to see if there are geographical differences in information needs and discourse. A research brief will share new knowledge gained with the field on how to respond to national emergencies, such as the COVID-19 pandemic, using local TV news and reinforcement of messages across contexts. The findings from this award will provide a knowledge base that can be utilized to better inform responses to national emergencies in the future. By broadly disseminating these findings through a research brief, the project?s innovative research will advance the field of communication science.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
We explored the potential of science to facilitate social inclusion with teenagers who had interrupted their studies before the terms set for compulsory education. The project was carried out from 2014 to 2018 within SISSA (International School for Advanced Studies), a scientific and higher education institution in physics, mathematics and neurosciences, and was focused on the production of video games using Scratch. The outcomes are encouraging: through active engagement, the participants have succeeded in completing complex projects, taking responsibilities and interacting with people
DATE:
TEAM MEMBERS:
Simona CerratoFrancesca RizzatoLucia TealdiElena Canel
Despite the ubiquity of Artificial Intelligence (AI), public understanding of how it works and is used is limited This project will research, design, and develop innovative approaches focusing on Artificial Intelligence (AI) for under-represented youth ages 14-24. Program components include live social media chats with AI leaders, app development, journalistic investigations of ethical issues in machine learning, and review of AI-based consumer products. Youth Radio is a non-profit media and tech organizations that provides youth with skills in STEM, journalism, arts, and communications. They engage 250 youth annually through free after-school classes and work shifts. Participants are 90% youth of color and 80% low income. Project partners include the MIT Media Lab which developed App Inventor which allows novice users to build fully functional apps. Staff from Google will serve as a project advisor on the curriculum. The project has exceptional national reach through the dissemination of its media and apps through national outlets such as NPR and Teen Vogue as well as various platforms including online, on-air, as well as presentations, publications, and training tools. The project broadens participation by engaging these low income youth of color in developing skills critical to the workforce of the future. It will help prepare an upcoming generation of Artificial Intelligence creators, users, and consumers who understand the technology and embrace and encourage its potential.It will give them the necessary knowledge and opportunities for careers in an AI-driven future.
This project is grounded in sociocultural learning theory and practice and is interdisciplinary by design. The theoretical framework holds that Computational Thinking plus Critical Pedagogy leads to Critical Computational Literacy. Also, Digital Age Civics plus Participatory Culture leads to Civic Imagination helping youth build a better world through technology. The driving research questions include: What do underrepresented youth understand about AI and its role in society? What are the ethical dilemmas posed by AI from their vantage point? What are the features of an engaging ethics-centered pedagogy with AI? What impact do the AI products developed by the youth have on the target audience? The research design will use ethnographic techniques and design research to study and analyze youth learning. Data sources will include baseline surveys, audio recordings and transcriptions from learning sessions with the participants, research analytic memos, focus group interviews, student-generating artifacts of learning and finished products, etc. The design-based approach will enable systematic, evidence-based iteration on the initiative's activities, pedagogical approach and products. An independent summative evaluation will provide complementary data and perspective to triangulate with the research findings.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Elisabeth SoepEllin O'LearyHarold Abelson
AHA! Island is a new project that uses animation, live-action videos, and hands-on activities to support joint engagement of children and caregivers around computational thinking concepts and practices. This research is intended to examine the extent to which the prototyped media and activity sets support the project’s learning goals. Education Development Center (EDC), WGBH’s research partner for the project, conducted a small formative study with 16 English-speaking families (children and their caregivers) to test out these media and activity set prototypes. During the in-person video
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.
While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE:
-
TEAM MEMBERS:
Amy TuiningaAshwani VasishthPankaj Lai
The University of California, Irvine will lead this Design and Development Launch Pilot to engage with collaborators from the Orange County CA STEM Initiative, the Orange County CA Department of Education, the Orange County CA Workforce Investment Board, the Jamboree Affordable Housing Communities, the Orangewood Foundation for Foster and Community Youth Services, OCTANE-Technology Incubator, Project Tomorrow and Growth Section. This project was created in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address the computing technology education practices for recruiting, better educating, retaining and graduating a productive STEM workforce. However women who are members of underrepresented minority groups, with low socioeconomic status, historically underperform in STEM and specifically in computing technology. This project, NSF INCLUDES: Supporting Women Advancing Through Technology, has the potential to significantly advance a collaborative approach by a group of organizations to improve the success of poor, underrepresented minority women who are learning computing technology and transitioning to the STEM workforce.
The project will demonstrate the outcomes of computer science training for women, particular disenfranchised and underrepresented minority women that may be exiting foster youth services, living in low income housing, and/or having been denied access to programs particularly in technology due to their socioeconomic status. Partnering organizations will design, develop and launch a short-term, intensive training opportunity in computer science for women ages 16 to 34 who are unemployed or underemployed, and who desire to engage in upward career mobility. The program will include a replicable, custom curriculum and an educational approach that will be scalable. A boot camp will teach the fundamentals of Ruby on Rails, HTML, CSS, SQL, JavaScript, and AngularJS, and prepare participants for a career in web development while enabling them to keep their day jobs and have childcare provided. Educating a randomized sample treatment group of up to 150 women in this launch pilot, the partners will also offer internships and/or job shadows, where participants gain client experience, learn from more experienced developers, and continue to build their portfolios. All of the women in the program will receive information, coaching and exposure to college and career opportunities. Job placement in STEM careers is the outcome goal of this design and development launch pilot.