This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
This special report describes NSF INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science), a comprehensive initiative to enhance U.S. leadership in science and engineering discovery and innovation by proactively seeking and effectively developing science, technology, engineering and mathematics (STEM) talent from all sectors and groups in our society. By facilitating partnerships, communication and cooperation, NSF aims to build on and scale up what works in broadening participation programs to reach underserved populations
These slides were presented at the NSF Advancing Informal STEM Learning (AISL) Principal Investigators' Meeting held in Bethesda, MD from February 29-March 2, 2016. The presentation describes NSF INCLUDES, a funding opportunity that leverages collective impact strategies to broaden participation in STEM.
This document presents an overview of the quantitative survey data findings from the SL+ Equity Pathways in Informal Science Learning project. Further qualitative analysis on some of the open response data is yet to be completed. Findings are grouped into four areas: about the individuals taking part in the survey; their definitions and understanding of equity and related terms; their current equity practice; and their practices around equity work including reading, talking with colleagues and evaluation.
This briefing paper reports findings from the Youth Access & Equity in Informal Science Learning (ISL) project, a UK-US researcher-practitioner partnership funded by the Science Learning+ Phase 1 scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings, including designed spaces (eg museums, zoos), community-based (e.g. afterschool clubs) and everyday science spaces (e.g. science media).
This briefing paper reports findings from the Youth Access & Equity in Informal Science Learning (ISL) project,
a UK-US researcher-practitioner partnership funded by the Science Learning+ scheme. Our project focuses on young people aged 11-14 primarily from under-served and non-dominant communities and includes researchers and practitioners from a range of ISL settings: designed spaces (e.g. museums, zoos), community-based (e.g. after school clubs) and everyday science spaces (e.g. science media).
Portland State University (PSU) and Multnomah County Library (MCL) will collaborate on research designed to improve library practices, programs, and services for adult patrons, especially adults with low literacy skills, including seniors, English learners, socially isolated adults, and adults with low incomes. The project features the administration of the “Problem Solving in Technology Rich Environments” (PSTRE) survey developed by the Program for the International Assessment of Adult Competencies (PIAAC) of the Organization for Economic Cooperation and Development (OECD). The research will inform efforts to improve the nation’s education and workforce development strategies and investments and ensure that libraries are an integral part of these efforts.
This pathways project will design, develop and test Do-It-Yourself, (DIY), hands-on workshops to introduce and teach middle school females in underserved Latino communities computing and design by customizing and repurposing e-waste media technology, such as old cell phones or appliances -- items found in the students homes or neighborhoods. The major outcome of the project will be the creation of a workshop kit that covers the processes of DIY electronics learning taking place in the workshops for distribution of the curriculum to after school programs and other informal science venues. The PIs have implemented three pilot projects over the last three years that demonstrate the ability of hands-on DIY electronics curricula to motivate and encourage students and to enable them to acquire a deeper understanding of core engineering, mathematics and science concepts. This project would extend the approach to underserved Latino youth, particular girls of middle school age. This audience was identified because of the historically low rate of participation in STEM fields by people in this group and the particular challenges that females have in acquiring knowledge in technical STEM areas. The proposal suggests that the approach of using hands-on workshops that rely on low technical requirements -- essentially obsolete or discarded electronic equipment, primarily from homes of participants -- will encourage the target audience to experiment with items they are familiar with and that are culturally relevant. The hypothesis of the project is that this approach will lower barriers to experimenting with "circuit bending" - the hand-modifying of battery-powered children's toys to build custom electronic instruments and lead to greater participation and success of females in the target group. The project will provide free workshops in two neighborhood locations and be supported by undergraduate student mentors and volunteers and staff of two community groups that are part of the project, Machine Project and Girls, Inc. Participants will demonstrate the finished projects to the workshop group, mentors and parents. Each participant will receive a copy of the workshop handbook in both English and Spanish to take home so that parents, members of the community and caregivers can supervise and participate in future projects.
DATE:
-
TEAM MEMBERS:
Garnet HertzGillian HayesRebecca Black
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately, few youth from under-represented populations have had the opportunity to participate in these maker spaces, and many communities do not have the resources to establish facilities dedicated to making activities. This project, a collaboration of faculty at California State University, San Marcos and San Diego County Office of Education, the Vista Unified School District, and the San Diego Fab Lab, is a feasibility study that will work to address these needs by implementing and evaluating a pilot Mobile Making program in an underserved youth population. It will bring Making to four after-school programs in underserved communities in San Diego by using a van to take both equipment and undergraduate student mentors to program sites. At these sites, between 50% and 90% of the students are Hispanic or Latino and between 40% and 90% are eligible for free or reduced price lunch. The project employs a research-based approach to the design and implementation of the Mobile Making program, coupled with an evidenced-based plan for developing a model for future dissemination. Project objectives are: increasing the participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life; identifying and overcoming challenges associated with a Mobile Making program; developing a model for implementing and assessing Mobile Making in underserved communities; and disseminating materials and guides for practitioners. Development will be guided by five research-based principles for design of out-of-school time programs in underserved communities: access to resources; ethnically diverse near-peer leaders; authentic activities; legitimacy within the community; and ongoing input from participants. To inform program development and implementation, including continuous monitoring and adjustment throughout the two-year initiative, the evaluation component will use a mixed methods approach to study outcomes with respect to the students, their parents and the undergraduate mentors. Future work will apply the lessons learned in the project to guide implementations and study the model's applicability in other informal education settings. The dissemination plan will include publication of project findings, activities, practitioner's guides, and the model for implementing making programs in underserved communities.
An intensive intervention including project-based learning and case management services keeps at-risk ninth-and tenth-graders engaged and helps them overcome barriers to school success.
DATE:
TEAM MEMBERS:
Tracey HartmannDeborah GoodKimberly Edmunds
Community technology centers (CTCs) help bridge the digital divide for immigrant youth in disadvantaged neighborhoods. A study of six CTCs in California shows that these centers also promote positive youth development for young people who are challenged to straddle two cultures.
DATE:
TEAM MEMBERS:
Rebecca LondonManuel PastorRachel Rosner
This study investigated the ways in which the Science Mentoring Project, an afterschool program with a youth development focus and mentoring component, helped fifth-grade participants develop key competencies in five areas: personal, social, cognitive, creative, and civic competencies. Development of these competencies, in turn, positively affected participants’ school experiences. Using program observations, teacher interviews, student surveys, a student focus group, and mentor feedback forms, researchers studied how—not just whether—the project’s youth development activities affected school