Right now about one billion people suffer from chronic hunger. the world’s farmers grow enough food to feed them, but it is not properly distributed and, even if it were, many cannot afford it, because prices are escalating. But another challenge looms. By 2050 the world’s population will increase by two billion or three billion, which will likely double the demand for food, according to several studies. Demand will also rise because many more people will have higher incomes, which means they will eat more, especially meat. Increasing use of cropland for biofuels will make meeting the doubling
In a sustainable world, human needs would be met without chronic harm to the environment and without sacrificing the ability of future generations to meet their needs. Addressing the grand challenge of sustainability, the U.S. National Science Foundation (NSF) has developed a coordinated research and education framework, called the Science, Engineering, and Education for Sustainability (SEES) portfolio (http://www.nsf.gov/sees). The growing family of SEES activities, currently consisting of 11 programs, represents a major interdisciplinary investment by NSF that reflects the following topical
DATE:
TEAM MEMBERS:
Tim KilleenBen Van Der PluumMarge Cavanaugh
The Let’s Talk project examined what we know and don’t know about dialogue-based programs in museums. Through research, a symposium and an experimental graduate course, the project created a set of priorities and resources for moving dialogue work forward, developed new relationships across STEM based and cultural based museums and prepared a pool of pre-professionals to enter the field with knowledge of the value and potential of dialogue. The project ends with a call for further articulation and appropriate measurement of the intended and possible impacts and further development of field
The National Science Foundation (NSF) supports the most meritorious ideas submitted as proposals from researchers and educators in all fields of science, technology, engineering, and mathematics (STEM). Creating opportunities and developing innovative strategies to broaden participation among diverse individuals, institutions, and geographic areas are critical to the NSF mission of identifying and funding work at the leading edge of discovery. The creative engagement of diverse ideas and perspectives is essential to enabling the transformative research that invigorates our nation’s scientific
The purpose of this document is to build on best practices and offer new approaches toward creating "a bold new initiative" to augment the Foundation's ongoing efforts to increase participation in STEM from underrepresented groups.
This is a two-year "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot targeting high school students in the Hudson Valley, including the New York Metropolitan Area. It will support a network of institutional partners that are committed to providing internship and mentoring opportunities to youths interested in authentic research projects. The proposed work will build on a current research immersion program--the Secondary School Field Research Program (SSFRP) at Columbia University's Lamont-Doherty Earth Observatory. SSFRP serves high school students, mainly from underrepresented and underserved communities, who work with college students, science teachers, and researchers around a specific science problem. Over the past decade, the program has had demonstrable impact, including attendance to college, and students' selection of STEM majors. Tracking data indicates that retention rates of its alumni in four-year colleges are well above the norm, and a significant fraction of early participants are now in graduate programs in science or engineering. The program has surpassed all expectations in its effectiveness at engaging underserved populations in science and promoting entry into college, recruitment into STEM majors, and retention through undergraduate and into graduate studies. Hence, the project's overall goal will be to extend and adapt the research-immersive summer internship model through an alliance with peer research institutions, school districts and networks, public land and resource management agencies, private funding agencies, informal educational institutions, and experts in pedagogical modeling, metrics, and evaluation. Focused on earth and environmental sciences, the summer and year-round mentoring model will allow high school students to work in research teams led by college students and teachers under the direction of research scientists. The mentoring model will be multilayered, with peer, near-peer, and researcher-student relationships interweaving throughout the learning process.
The project has formulated a set of testable explanatory hypotheses: (1) Beyond specific subject knowledge, success rests on increased student engagement in a community of practice, with near-peer mentors, teachers, and scientists in the context of scientific research; (2) The intensity of engagement also shifts the students' vision of their future to include higher education, and specifically to imagine and move toward a STEM career; and (3) Early engagement, before students attend college, is critical because high school is where students form patterns of engagement and capacities related to science learning. Thus, the immediate goal of the two-year plan will be to create approximately 11 research internship programs focused on earth and environmental sciences, and to build the networks for growth through engagement with a wider community of educational partners. The main focus of this approach will be removing barriers between high school students and STEM organizations, and adapting the current mentoring model at Columbia University to the specific cultures of other research groups and internship programs throughout the lower Hudson Valley. The team has already assembled a diverse set of partners committed to broadening participation in STEM using a collective impact approach to early engagement in project-based learning. Research partners will provide the mentors, research projects, and laboratory facilities. The educational network partners will provide access for students, particularly those from under-resourced communities to participate, as well as participation opportunities for interested teachers. Informal learning organizations will provide access to field and research sites, along with research dissemination opportunities. In Year 1, the project will conduct a series of development workshops for partners already in place and foster the formation of new partnership clusters according to shared interest, complementary resources and geographic proximity. The workshops will provide a forum for partners to learn about each other's visions, values, challenges, and existing structures, while working through theoretical and practical issues related to STEM engagement for young investigators. In Year 2, the project will target the implementation of the internship programs at various sites according to the agreed-upon goals, program model, research projects, recruitment and retention strategy, staff training, data collection, and evaluation plans. An external evaluator will address both the formative and summative evaluation of the effort directed toward examining the three project's hypotheses concerning the educational impacts of scientific research on student engagement, extent of the immersion, and overall effectiveness of the programs.
DATE:
-
TEAM MEMBERS:
Robert NewtonLuo Cassie XuMargie TurrinEinat LevMatthew Palmer
resourceprojectProfessional Development, Conferences, and Networks
Physics awards smaller percentages of PhDs to women (19%) and underrepresented ethnic and racial minorities (7%) than any other field in the sciences, and underrepresentation is especially pronounced at selective universities. As global competition for scientific talent heats up and US demographics shift, cultivating a robust domestic workforce is critical to US technological leadership. We seek to build on the successful American Physical Society Bridge Program (apsbridgeprogram.org) by transforming physics graduate education to fully support the inclusion of women and ethnic and racial minorities. Our vision is to create a national network of disciplinary colleagues, expert researchers, and representatives from professional associations who will develop and build evidence-based knowledge of effective practices for recruitment, admissions, and retention of women and underrepresented ethnic and racial minorities. This pilot project will include six large, highly selective physics graduate programs to demonstrate and map out a plan for a discipline-wide effort. The pilot focuses on improving admissions practices, because this strategy promises immediate and measurable impact backed by extant research. The pilot will also take exploratory steps to develop scalable recruitment and retention strategies. To refine interventions, we will conduct research to identify and understand demographically-based loss points of students in graduate physics programs and to understand how network participation facilitates change. The project will also establish connections with other STEM disciplines, beginning with mathematics and chemistry, to explore expanding these efforts.
This project is grounded in research on diversity in graduate education, organizational learning, and the resources of networks to catalyze cultural change. The project team includes expertise in institutional change, graduate admissions, student success, diverse and inclusive environments, and social science research. The pilot advances a novel research agenda on inclusion in STEM by addressing recruitment, admissions, and retention in physics graduate education as interconnected challenges of faculty learning, professional networks, and disciplinary cultural change. Physics graduate programs will report admissions data and common metrics, and will document changes resulting from project activities. Faculty will be trained on holistic admissions and diversity in selection processes, and be guided in the use of inclusive admissions practices. An external evaluator will examine project effectiveness and readiness for scaling to an Alliance phase project.
DATE:
-
TEAM MEMBERS:
Monica PlischTheodore HodappJulie PosseltGeraldine CochranCasey Miller
Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an
DATE:
TEAM MEMBERS:
National Academies of Sciences, Engineering, and Medicine
While interest in citizen science as an avenue for increasing scientific engagement and literacy has been increasing, understanding how to effectively engage underrepresented minorities (URMs) in these projects remains a challenge. Based on the research literature on strategies for engaging URMs in STEM activities and the project team’s extensive experience working with URMs, the project team developed a citizen science model tailored to URMs that included the following elements: 1) science that is relevant to participants’ daily lives, 2) removal of barriers to participation, such as
The emergence and recognition of outreach and engagement staff and non-tenure track faculty in higher education literature as key figures in the success of university outreach and community engagement are welcome developments for these practitioners. This article describes the perceptions of outreach and engagement staff at large, public research universities with decentralized engagement initiatives. The authors describe efforts to organize outreach and community engagement staff to create supportive networks, improve practice, provide professional development opportunities, and advocate for
This paper discusses the concepts and practice of museum conservation, and the role of conservation in preserving both material and significance of objects. It explores the conservation of science and industry collections and the fact that the significance of many of these objects lies in their operation. It considers alternatives to operating original objects but emphasises the value of experiencing the real thing, and argues that visitors should be given greater physical access to museum objects, including being enabled to handle and work functioning objects. It finishes by calling for
Framing ‘science and society’ as a conflict has diverted us from more important problems. Our economic environment urges the commercialisation and social acceptance of new technologies, and science communicators and their publics contribute work to these ends. These activities neglect existing, uncontroversial technologies that, in a collaboration between responsible scientists and their publics, could be deployed to address global problems.