Skip to main content

Community Repository Search Results

resource project Media and Technology
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
DATE: -
TEAM MEMBERS: Leigh Peake
resource project Public Programs
Public Libraries Advancing Community Engagement: Environmental Literacy Through Climate Change Discussions (PLACE) is a nationally disseminated, locally-based program that engages adults in geographic-specific discussions and critical thinking about resilient responses to environmental changes and extreme weather events, through programs in their local public libraries. Historically, opportunities to increase adults’ environmental literacy have typically been available only through established science centers, and/or tended to target citizens who are already interested in environmental topics and issues. While science center hosted events and exhibits are important, reaching new and underserved audiences is imperative. PLACE engages new audiences — in their own libraries and with their own communities — by discussing their challenges, threats and helping their communities prepare for and respond to climate change and extreme weather events. PLACE will help rural and under-resourced communities build resilience to their region's’ unique vulnerabilities and threats through the following: (1) Select 50 rural and under-resourced libraries across the United States, (2) Create environmental literacy materials for library programs and professional development materials for librarians, (3) Provide professional development to participating librarians, developing their environmental literacy and fostering the use of NOAA assets for library patron services, (4) Assist libraries in finding and partnering with NOAA scientists, (5) Support libraries implementing a three-part, environmental literacy book/video/discussion program series for adults, complemented by a curated collection of NOAA assets that align with each program’s topic, and (6) Perform a summative evaluation of the impact and outcomes of the program. The project has a sustainability plan and a network in place to support the activities in an ongoing, national model for years beyond the initial project funding. PLACE leverages the model and resources of an earlier, similar program, Pushing the Limits (funded by the National Science Foundation), which demonstrated significant success in raising adults’ general science literacy in rural libraries across the United States. The project is being created, disseminated and evaluated through a partnership of The Califa Group (a California library consortium) and the National Weather Service, working in tandem with NOAA’s Office of Education.
DATE: -
TEAM MEMBERS: Paula MacKinnon
resource project Media and Technology
Over three years beginning in January 2016, the Science Museum of Virginia will launch a new suite of public programming entitled “Learn, Prepare, Act – Resilient Citizens Make Resilient Communities.” This project will leverage federally funded investments at the Museum, including a NOAA-funded Science On a Sphere® platform, National Fish and Wildlife-funded Rainkeepers exhibition, and the Department of Energy-funded EcoLab, to develop public programming and digital media messaging to help the general public understand climate change and its impacts on Virginia’s communities and give them tools to become resilient to its effects. Home to both the delicate Chesapeake Bay ecosystem and a highly vulnerable national shoreline, Virginia is extremely susceptible to the effects of climate change and extreme weather events. It is vital that citizens across the Commonwealth understand and recognize the current and future impacts that climate variability will have on Virginia’s economy, natural environment, and human health so that they will be better prepared to respond. In collaboration with NOAA Chesapeake Bay Office, George Mason University’s Center for Climate Change Communication, Virginia Institute for Marine Science, Public Broadcasting Service/National Public Radio affiliates, and Resilient Virginia, the Museum will use data from the National Climatic Data Center and Virginia Coastal Geospatial and Educational Mapping System to develop and deliver new resiliency-themed programming. This will include presentations for Science On a Sphere® and large format digital Dome theaters, 36 audio and video digital media broadcast pieces, two lecture series, community preparedness events, and a Resiliency Checklist and Certification program. This project supports NOAA’s mission goals to advance environmental literacy and share its vast knowledge and data with others.
DATE: -
TEAM MEMBERS: Richard Conti
resource project Public Programs
The National Ocean Sciences Bowl (NOSB), managed by The Consortium for Ocean Leadership, provides enriched science education and learning through a nationally recognized and highly acclaimed academic competition that increases high school students’ knowledge of the marine sciences, including the science disciplines of biology, chemistry, physics, and geology. The NOSB addresses a national gap in environmental and Earth sciences in K-12 education by introducing high school students to and engaging them in ocean sciences, preparing them for careers in ocean science and other science, technology, engineering and mathematics (STEM). Currently, there are 25 regions in the U.S. that compete in the NOSB, each with their own regional competitions. The regional competitions are coordinated by the Regional Coordinators, who are typically affiliated with a university in their region. Each year approximately 2,000 students from 300 schools across the nation compete for prizes and a trip to the national competition. The goal of this organization is to increase knowledge of the ocean among high school students and, ultimately, magnify the public understanding of ocean research. Students who participate are eligible to apply for the National Ocean Scholar Program.
DATE: -
TEAM MEMBERS: Kristen Yarincik
resource project Media and Technology
Purpose: This project team will develop and test Zaption, a mobile and desktop platform designed to support educators in effectively and efficiently utilizing video (e.g., from YouTube, Vimeo, or their own desktop) as an interactive teaching and learning object. Personalized learning devices (e.g., smartphones, tablets) populated with video content provide opportunities for students to access educationally-meaningful content anywhere and anytime. Yet, video has yet to realize its potential as a learning tool in or out of the classroom. One reason for this is that watching video can be a passive experience for students, whereas learning requires active engagement. A second reason is that even if students are actively engaged while watching a video, there is no easy way to elicit student responses to a video. And finally, there is no easy way to feed student responses to teachers as formative assessment data to guide subsequent instruction.

Project Activities: During Phase I, (completed in 2014), the team expanded a pre-existing prototype by building a mobile app to enable anytime use and increase its functionality for teachers. At the end of Phase I, pilot research with 150 students in 7 classrooms demonstrated that the prototype operated as intended, teachers were able to integrate the videos within instructional practice, and students found the mobile app helpful and engaging. In Phase II, the team will add additional components to the prototype and will develop content-specific modules for use in high school physics classes. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Zaption for supporting student's physics learning. The study will include 32 Grade 10 physics classrooms, half of whom will be randomly assigned to use Zaption and half of whom will follow business as usual procedures. Analyses will compare pre-and-post scores of student's physics learning.

Product: Zaption will be a mobile and web-based platform to support the use of any video (e.g., from YouTube, Vimeo, or their own desktop) as a teaching and learning tool. Zaption will include an authoring engine where users can find and select video clips and easily insert interactive elements such as questions, discussions, and annotations into the videos. Users will then publish videos directly on Zaption's website, or on any learning management system or classroom website. Students will be able to view videos as homework or in class, respond individually to the questions and prompts, and get feedback on their responses. Teachers will use Zaption Analytics to receive immediate and actionable data showing whether students actually watched and engaged with a video, and how students responded to the questions and prompts.
DATE: -
TEAM MEMBERS: Chris Walsh
resource project Media and Technology
Purpose: This project will develop and test Eco, an online multiplayer virtual environment and game designed to enhance middle school students' knowledge of ecology and environmental literacy. This is important because according to the 2011 National Assessment of Educational Progress, students in the United States ranked 17th in science among the world's most developed countries, and over a third of eighth-graders scored below basic level, the lowest performance level. The Framework for 21st Century Skills presents the need for education materials that engage students and use technology effectively, meet rigorous content and skill standards, foster interdisciplinary work, and promote collaborative problem solving.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of Eco consisting of a system architecture that enabled user-controlled avatars to complete basic tasks. At the end of Phase I, a pilot study with 60 students from five classrooms demonstrated that the prototype functioned as intended, that students found the game to be engaging, and that students were able to collaborate with classmates during gameplay. In Phase II the developers will strengthen functionality, add content, and build a teacher dashboard to track student data and house implementation resources. After development is complete, the team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the game for promoting students' ecosystem learning and environmental literacy. The researchers will collect data from 150 students in 10 classrooms. Half of the classrooms will be randomly assigned to use Eco to supplement standard classroom instruction while the other half will continue with normal practice. Analyses will compare pre-and-post scores of student's ecology knowledge and environmental literacy.

Product: Eco will be a multi-player game to teach standards in ecology and prepare middle schools students to be environmentally literate citizens. To play the game, students will enter a shared online world featuring a simulated ecosystem of plants and animals. Students will co-create a civilization by measuring, modeling, and analyzing the underlying ecosystem. Students will advocate for proposed plans to classmates and make decisions as a group. Cooperation and science-based decision making activities will occur, in order to prevent the destruction of the environment. The game will include teacher resources to support the alignment of game play to learning goals, and implementation.
DATE: -
TEAM MEMBERS: John Krajewski
resource project Media and Technology
Purpose: This project will develop and test Kiko's Thinking Time, a series of game apps designed to strengthen children's cognitive skills related to executive functioning and reasoning. A principle objective of preschool is to prepare children for later success in school. Most programs focus on activities to support children's social and emotional development, and to strengthen pre-reading and mathematics competencies. Fewer programs explicitly focus on fostering children's executive function and reasoning skills—even though research in the cognitive sciences demonstrates these skills also provide a foundation for school-readiness.

Project Activities: During Phase I (completed in 2014), the team developed six prototype games and a teacher portal to track student progress. At the end of Phase I, results from a pilot study with 55 kindergarten students and 5 teachers demonstrated that the games operated as intended. Results indicated that students were engaged based on duration of game play, and that teachers were able to review game data for each child. In Phase II, the team will develop 15 more games and will further refine and enhance the functionality of the teacher portal. After development is complete, a pilot study will assess the feasibility and usability, fidelity of implementation, and the promise of the games for promoting students' executive functioning and reasoning. The researchers will collect data from 200 students in 10 preschool classrooms over 2 months. Half of the students in each class will be randomly assigned to use Kiko's Thinking Time while the other half will play an art-focused gaming app. Analyses will compare pre-and-post scores on measures of student's executive functioning and reasoning.

Product: Kiko's Thinking Time will be an app with 25 games, each based on tasks shown to have cognitive benefits in lab research. Each game will be designed to isolate and train skills related to executive functioning, such as: working memory, reasoning, inhibition, selective attention, cognitive flexibility, and spatial skills. Game play will be self-guided and adaptive, as the software will adjust in difficulty based on student responses. The app will work on tablets, smartphones, as well desktops. In addition, a companion website will allow teachers to track student performance and to obtain educational material around executive function and cognitive development.
DATE: -
TEAM MEMBERS: Grace Wardhana
resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Professional Development, Conferences, and Networks
The National Science Foundation (NSF) Climate Change Education Partnership Alliance (CCEPA) is a consortium made up of the six Phase II Climate Change Education Partnership (CCEP-II) program awardees funded in FY 2012. Collectively, the CCEPA is establishing a coordinated network devoted to increasing the adoption of effective, high quality educational programs and resources related to the science of climate change and its potential impacts. The establishment of a CCEPA Coordination Office addresses the need for a coordinating body that leverages and builds upon the CCEPA projects' individual initiatives. The CCEPA Coordination Office facilitates interactions to leverage a successful network of CCEP-II projects and individuals engaged in increasing climate science literacy. The efforts of the Coordination Office advance knowledge and understanding of how to effectively network related, but different, projects into a cohesive enterprise. The goal is to coordinate a functional network, where the whole is greater than the sum of the parts.

The CCEPA Coordination Office at the University of Rhode Island is helping to move the CCEPA network forward on a number of key initiatives that strengthen it, reduce duplication, and enhance its overall impact. An important role of the Coordination Office is the facilitation of the transfer of best practices between projects. An effective network forges collaborations and establishes communities of practice through network working groups, building intellectual capital network-wide. The CCEPA Coordination Office has a key role in assisting the CCEPA project PIs and staff to disseminate the results of their work. Partnerships with other relevant societies and organizations assist the Coordination Office in identifying opportunities and synergies for sharing, disseminating, and leveraging network products as well as best practices that emerge as Earth system science education models and tools are evaluated. This endeavor broadens the collective impact of the individual projects across the country.
DATE: -
TEAM MEMBERS: Gail Scowcroft
resource project Professional Development, Conferences, and Networks
The scientific community has been under increasing pressure from policymakers and the public to explain how research contributes to the public good. The community has emphasized two distinct approaches to explaining its operations and value. The first is the use of narratives that can make the work of science more accessible and engaging to nonscientists. The other is the use of new data mining and analysis methods to document quantitatively the complex paths by which research progresses and eventually contributes to a variety of societal goals. While both of these approaches have proved useful, the goal of this workshop is to explore ways that they might be combined into a hybrid approach that will be even more effective.

This workshop will assemble experts in the narrative and data-driven science communication approaches with leading science researchers to discuss how these various perspectives can be merged to define a template for a type of communication that encompasses the appeal of narrative, the rigor of new analytic data, and the understanding of how science works in practice.
DATE: -
TEAM MEMBERS: Kevin Finneran
resource project Exhibitions
Pacific Science Center (PSC) proposes Out of the Lab and Into the Spotlight (OLIS) a five-year project to bring current and fascinating information about health science research to Pacific Northwest audiences. Through a series of showcases that change content every six months the Research Focus Gallery will highlight cutting-edge local research. The Gallery a combined exhibit and program space will feature multimedia displays research artifacts hands-on exhibits and a presentation area where local researchers will communicate their work to visitors. An annual three-day research festival and monthly Science Cafes in three locations will complement the programs presented in the Gallery and will provide multiple venues for a variety of audiences to meet face-to-face with local researchers and learn about health science and related careers. Out of the Lab and Into the Spotlight will further the goals of the Science Education Partnership Award by 1) connecting the community to NIH-funded research and 2) increasing the awareness of young people in the Puget Sound region about careers in scientific research. An in-depth evaluation conducted by the external evaluator Center for Research Evaluation and Assessment will measure the effectiveness of the project in reaching the following outcomes: * The extent to which the program informs PSC visitors about the wide variety of NIH-funded research being performed in the region; specifically whether PSC visitors have an increased understanding of the various research areas presented. * The impact of the program on over 100 scientist participants; specifically scientists’ ability to communicate research ideas to the public and their interest in future participation. * The ability of PSC program developers to develop a future-ready space; specifically if the developed showcases and templates are adaptable to future content areas. The proposed project will draw upon our established relationships with local research organizations that together receive close to one billion dollars annually from NIH. The project leverages and deepens relationships that already exist between each of these institutions and PSC to enhance science learning in our community in novel ways. The primary audience for OLIS will be families and school groups ages eight and older drawn from over 800000 annual visitors. As a standalone element within the new Wellness exhibit due to open in 2011 we anticipate the Gallery will reach three to four million visitors during the grant period and up to five million additional visitors in the subsequent five years. PUBLIC HEALTH RELEVANCE (provided by applicant): Individuals need to obtain process and understand basic health information to make appropriate health decisions (Healthy People 2010). The proposed project Out of the Lab and Into the Spotlight will provide opportunities for the general public to increase their understanding of current health information and increase their awareness of cutting-edge research taking place in their own backyard. By engaging with research scientists in several venues the public will be exposed to NIH funded research and health science careers.
DATE: -
TEAM MEMBERS: Diana Johns Meena Selvakumar Chris Cadenhead
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.

The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.

The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
DATE: -
TEAM MEMBERS: Kathryn Guimond Sarah Cohn Joseph Adamji Lauren Causey Shannon McManimon