Two 8 to 10 week modules, one focusing on cells and the other on reproduction and heredity, serve as the basis for the development of a comprehensive, assessment-driven, middle school science curriculum called "Science for Today and Tomorrow." A curriculum frramework is developed for Life and Physical Sciences to be taught in Grades 6 and 7 and Earth Science in Grade 8. The research-based materials assist students to develop a working knowledge of a core set of ideas that are fundamental to the discipline and ultimately to see how the concepts span the disciplines. The student materials and the teachers' guides are enhanced with classroom-tested assessments and web-based content resources, simulations and tools for gathering and interpreting data. On-line professional development materials allow teachers to gain content knowledge and pedagogical skills. The website also contains an area that provides information for administrators including strategies for supporting teachers and another area for community members to involve them in the students' science learning. The project builds upon the lessons learned in previous materials development projects at TERC.
This sixth through eighth grade comprehensive, project-based, science curriculum focuses on students acquiring deep understandings of the concepts, principles and habits of mind articulated in national science standards. The curriculum builds upon the experiences of the Center for Learning Technologies in Urban Schools developing the LeTUS modules for Chicago and Detroit Public Schools. The project brings together scientists and science educators from three universities, teachers and administrators from six school districts, curriculum speialists from Project 2061, educational researchers from EDC, and Kendall/Hunt publishers. The design principles, arising from research on teaching and learning, include alignment with standards, assessments, contextualization, sustained student inquiry, embedded learning technologies, collaboration, and scaffolds between and within modules. Phase 1 focuses on the development of two units: Structure of Matter and Diversity of Life and Evolution. Learning outcomes are identified, target understanding performances are specified and assessments are designed before the activities are developed. Everday authentic questions that students hold as important provide the basis for projects, contextualize the activities and give coherence to the curriculum. In addition to the student materials and teacher guides, the project develops materials to provide information to administrators and the community to understand and support the implementation of the modules. Issues of language, literacy, culture and diversity are addressed. Professional development materials address teacher attitudes and beliefs while educating the teachers about the new context and pedagogy.
The Museum of Science and Industry will develop "Genetics: Decoding Life," a 4325 sq. ft. permanent exhibit about the basic principles of genetics, the Human Genome Project, new tools and technology to study life, and the biomedical and biotech applications resulting from genetic information. As a result of interacting with this exhibit, visitors will understand the basic principles of genetics, they will become familiar with the role of genes in the development of life, they will learn something about how and why scientists used genetic tools, and visitors will become aware of applications of these principles and the potential social, ethical, medical and economic outcomes. In addition to the exhibit there will be a number of complementary outreach programs. An electronic web site will be created, software used in the exhibit will be modified into a format suitable for use in schools, computers loaded with genetic programs will be loaned to Chicago public school groups, churches and other community agencies, and the content of the exhibit will be used to enhance special Lamaze and prenatal classes held at the museum. Special consideration will be given to developing the relationship between the project personnel and the staff of the Chicago Systemic Initiative. They will work together to produce a school program about genetics that will be suitable for grades 5 to 8. School materials will include a teacher's guide for the exhibit, a program of classroom activities, and materials to be used before and after a trip to the museum to see the exhibit.
This project, coordinated by the New Jersey Mathematics Coalition (and a major partner with the SSI) will use the recently completed New Jersey Frameworks in mathematics and science as the core of a parent education effort that will reach 300,000 parents of school age children in the state, representing 50% of the parent population and all 603 school districts. This project will be a vehicle for providing opportunities for parents to become familiar with these standards. The project will undertake a three-stage approach to parental outreach: (1) awareness activities, including the development of materials printed in both English and Spanish, public television, and a Website; (2) increasing involvement of parents through establishing a clearinghouse for information; and (3) activation activities to help parents work more effectively on mathematics and science reform efforts at the school, district, and state levels.
Parent Partners in School Science (PPSS) is a partnership project between The Franklin Institute and the Philadelphia School District. This is a three and one-half year program which will provide a pivotal role for the informal science learning center to be a facilitator in parental support of K-4 school instruction in science. The PPSS program will involve teachers, families and children in grades K-2 the first year, grades 1-3 the next, and finally grades 2-4 in the third year. The incorporation of the national science standards and working with Home and School Associations (HSA) in the area schools, the program will impact over 3600 children, 5400 parents and 45 educators participating over the life of the project. There are several goals and elements in the program. This will certainly demonstrate how an informal science center supports learning and it is also hoped to become a model for effective parent-teacher and parent-child collaboration to support learning. There will be Exploration Cards developed, which are at-home schince challenges for families, Discovery Days that are museum-based days of science inquiry using the yearly theme, Parent/Teacher Workshops at the museum, and finally a Science Celebration which is a showcase of participants' year-long achievements via an exhibit to be displayed at The Franklin Institute for a month, then traveling the exhibit to participating schools. The project's structure, disseminination acitivites and products are designed for national application and as a model for use in both formal and informal education communities. It is hoped the program will offer new opportunities for science center methology and pratice to provide direct support for the school agenda in science.
Family Science: Expanding Community Support for Inquiry-based Science is the University of Washington's innovative five-year plan for reaching youth and families in the Seattle school district. This program represents an enhancement of the NSF-funded Family Science program targeting grades K-5 and expansion of this successful program to include middle and high school students. The proposed activities, Science Explorations, Inquiry Science Conferences and Community Celebrations, are designed to help parents understand inquiry-based science instruction while heightening students' confidence in their ability to understand science processes. The hands-on activities also support and complement Seattle's Local Systemic Change project by enlisting teachers, parents and community members to champion science education outside of the formal school setting. The implementation strategy includes workshops to train Family Science Lead Teachers and Parent/Community Leaders to coordinate Family Science programs. Subsequent partnerships between teachers and community organizations are designed to establish regional clusters of community networks to support programmatic activities during and beyond the funding period. It is estimated that Family Science will result in the presentation of nearly 300 school and community-based events impacting 10,000 individuals.
DATE:
-
TEAM MEMBERS:
Leroy HoodEthan AllenDana RileyPatrick Ehrman
resourceprojectProfessional Development, Conferences, and Networks
The purpose of this project is to enhance African American parental involvement with high school student children by developing skills and strategies for effectively managing the educational careers of their children. It would create a capacity for collaborations with the schools that service African American children by developing the social and organizational infrastructure for continued parental involvement in educational careers. It seeks to increase enrollment and success of Black students in higher-level mathematics and science courses to diminish the race gap in math and science track placements. It uses a quasi-experimental design to implement a series of community workshops designed to enhance knowledge, skills, and strategies for managing placements of children in science and math tracks. The research would create an intervention designed to change the outcome of students. It would conduct ethnographic work to map successful pathways to enrollment in higher-level math courses. It would use findings from these studies to implement workships within the Black communities, and conduct statistical analysis of the growth in achievement as a result of the reduction in course taking.
This project develops an 8-week middle-school mathematics module that introduces cryptography, the science of sending secret messages, while teaching and reinforcing the learning of related mathematical concepts. The topics range from the classical encryption systems and the historic context in which they were used through powerful modern encryption systems that provide secrecy in electronic messages today. The module also covers passwords and codes that correct errors in the transmission of information. Public awareness of the importance of cryptography is growing, as is the need to understand the issues involved. The study of cryptography provides an interesting context for students to apply traditional mathematical skills and concepts. Mathematical topics covered include percents, probability, functions, prime numbers, decimals, inverses and modular arithmetic. The main product is a middle-school student book, with accompanying teacher materials. A web site is being developed that supports the activities in this book. Abbreviated modules for Grades 3, 4 and 5 are also being developed, as well as an instructor's guide for adapting the materials for use in informal educational settings such as museums and after-school programs. The development of the module involves piloting and field-testing by experienced classroom teachers from diverse school communities and instructors of informal educational programs. Evaluation includes review by mathematicians and educators, as well as an investigation into the level of students' understanding of the topics studied.
WGBH is conducting preliminary work on an untested and novel idea for a new multimedia project, EGames. The target audience for the project is children ages 9-12. The project envisions a 13-part television series which combines the appeal of a game show with the drama of real-world challenges to engender enthusiasm and promote understanding of engineering in kids nationwide. The television programs will be complemented with materials and training for engineers to mount EGames events in public venues and run workshops in schools, afterschool programs and libraries, and an extensive companion website. During the research phase, WGBH will convene a Content Advisory Board which would include professional engineers, curriculum developers, classroom teachers, professors of engineering and informal educators, and a Funding Advisory Board. They will also write the series curriculum, design the game, develop outreach, Web, and evaluation plans, and develop and test a sample engineering challenge with a group of contestants to work out logistic and production questions. This will inform the next stage of project development. Note: This project led to the series "FETCH! With Ruff Ruffman."
The Informal Science Education Program has been supporting the radio series "Living on Earth" for several years. The World Media Foundation is now adding environmental science and technology features to "Living on Earth" and is developing and testing an outreach component that will involve youth as researchers and radio producers. The science and technology features, ranging in length from four to twenty-four minutes, will depart from the usual news-driven reports on the programs. Many of the segments will illustrate basic building blocks of environmental science, technology and related mathematics. Others will profile diverse pioneers in these disciplines. The radio programs will be the framework for an interdisciplinary exploration program for youth. Working with a team of educators from the Antioch University Graduate Program in Environmental Education, the project staff will develop a program in which secondary school aged youth cooperate with peers to produce professional, concise reporting on local environmental issues. Living on Earth will feature the best of the student work on National Public Radio and highlight these pieces as an expanded feature on its website.
The long-running and highly successful National Public Radio series "Science Friday" is venturing in new directions. Given that basic research underlies all of the technological advances influencing our world and that tax dollars pay for that research, the public needs to be informed about the basics of research. To address this need for public education, "Science Friday" will examine the importance of research as a theme underlying all science and technology changes by: Finding the research roots at the bottom of each story; Exploring the cooperation among corporations, private institutions, and research foundations and illuminating how each plays a role in the research process; Following the research "bumps" along the road to illustrate that research success depends upon failures -- not all research produces positive results; Illuminating the barriers to successful research; Helping listeners understand the thought process of researchers; Scaling the "ivory tower" by enabling listeners to question and talk directly with researchers; and Helping listeners understand the role of basic research in policy-making. Ira Flatow, the host, will take "Science Friday" on the road and produce programs in Oklahoma, Iowa, Michigan, Massachusetts, Arizona and other locations. He also will visit schools and universities and will speak at public events. NPR also will reactivate the "Science Friday Kids Connection" which will take each week's program and its guest scientists directly into classrooms across the country.
Investigations in Number, Data and Space is an elementary school mathematics curriculum which reflects research on, and best practices in, learning and teaching mathematics in grades K-5. NSF funded the development of the original curriculum, starting in 1990. This revision of the "Investigations" curriculum will focus on the integration of algebraic thinking throughout the curriculum, the development of comprehensive assessment tools, and the strengthening of the number and operations strand. This work is informed by feedback from the field, as well as by recent recommendations for improving the mathematics curriculum. These revisions will be carried out and tested in an established network of school system partners, teacher collaborators and educational leaders. In addition to revising the curriculum, the project will develop materials to support teachers as they implement the curriculum. Additional materials will be developed for parents and administrators. The summative evaluation of the project will include longitudinal student achievement data, following two groups of students for three years each. Cost sharing will include substantial contributions from the publisher, Scott Foresman, and the developer, TERC.