The Whaling Museum & Education Center will expand its educational programming to benefit underserved and high-risk students in grades 2 to 5, as well as their teachers and families. The museum will develop, implement, market, and evaluate core components of its programming to reach nearly 3,000 students and 50 teachers. Museum educators will present hands-on activities in nearby schools, using real and replica artifacts and other learning materials. They will also deliver workshops for teachers at the museum to help them incorporate primary resources from the museum's collection into their curricula. A family day event will showcase what students learned from the in-class visit through displays of art projects and science posters. Other project activities will include free afterschool library programs exploring STEAM and history topics and an increase in the number of scholarships to the museum's summer camp program.
DATE:
-
TEAM MEMBERS:
Brenna McCormick-Thompson
resourceprojectProfessional Development, Conferences, and Networks
The Frank Lloyd Wright Home and Studio will expand its professional development program for educators in Chicago Public Schools and surrounding suburbs with low-income populations. The Teaching by Design program integrates design-based inquiry and problem-solving into K-12 curricula. It connects Wright's design philosophy to contemporary issues in STEAM subjects. Following a multi-year pilot, the trust will bring the project to scale by delivering 12 professional development seminars, developing 100 new lesson plans, enhancing the program's online platform, evaluating the project's short- and long-term impact, and cultivating a sustainable Teaching by Design learning community. The seminars will provide educators with a fully immersive artmaking and design experience that can be replicated in the classroom and connected to cross-curricular themes and learning standards. The project aims to reach 90 educators in at least 40 schools, 9,000 students, and an estimated 3,000 website users.
The Natural History Museum of Los Angeles County will design and fabricate the La Brea Tar Pits Mobile Museum to provide kindergarten to 2nd grade students with hands-on, immersive experiences based on its Ice Age fossil collections. The traveling exhibition will reach 20 underserved schools and 7,500 students annually. Programming will use early childhood play-based models. These models allow students time to explore and observe followed by periods of play that allow time to process, reflect, and retain. A museum educator will prepare classroom teachers for the school residency by providing a workshop and orientation to the Tar Pits, pre-visit classroom activities and lesson plans aligned with Next Generation Science Standards. The mobile museum will also be deployed at community parks, festivals, and special events on weekends and during the summer, reaching a total of 15,000 youth and families each year.
In partnership with the Pasadena and Los Angeles Unified School Districts, the Armory Center for the Arts will develop and implement comprehensive visual art-math and visual art-science curricula for grades two through five at Title I elementary schools. The curricula will be developed in conjunction with Armory teaching artists and educators, and will align with the Common Core Standards for math and science, and with the National Core Visual Arts Standards. The museum will deliver the program in 48 classrooms over a three-year period. Professional development, paired with in-class program modeling, will enable participating teachers to implement arts integration strategies into their teaching practice, with an overall goal of creating a sustainable and long-term impact on student learning. An external evaluator will oversee program assessment in the schools. The museum will post sample lessons from each curriculum online to demonstrate the style and scope of the program for possible use by additional school districts.
The Harvard Museums of Science and Culture will improve the ability of middle school teachers to use museum-based digital resources to support classroom instruction aligned with state and national science standards. Working with advisory teachers from five collaborating school districts, the museum will co-create classroom activities, based on digital resources from its collections, along with associated teacher professional development programs at three sites across urban and rural Massachusetts. The project will provide schools with access to classroom-ready resources that successfully support student learning. Teachers will learn how to use these materials, integrate them into their teaching, and enhance their skills to teach science content and practice. External evaluators will assess the project's effectiveness by measuring teacher implementation of the digital resources in the classroom, requests for information and assistance, and changes in teachers' confidence and comfort levels.
In partnership with early childhood service providers and elementary school systems, the Children's Museum of the Lowcountry will expand the reach of its programming to share its hands-on, play-based approach to STEM education with targeted children and educators. The museum will create a Power of Play curriculum with lesson plans that reflect best practices and focus on play-based activities to teach STEM concepts tied to grade level and state standards. The museum will train and support 40 teachers and educators from ten Head Start/First Steps early childhood centers and ten Title I elementary schools, and provide them with free Pop Up Tinker Shop (a museum on wheels) outreach visits. The trainings will build teacher confidence, promote best practices for play-based learning, support a community of practice, and enhance young learners' engagement, fascination, and attitude towards STEM. The Power of Play Curriculum will be published as a bound resource and shared with other children's museums and service providers.
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:
EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.
This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.
In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Implementation of a permanent exhibit and supporting programs exploring themes of labor, immigration, and the changing nature of work and community in New Bedford’s commercial fishing industry.
To produce "More Than a Job: Work and Community in New Bedford’s Commercial Fishing Industry," a permanent exhibit, digital exhibits, K-12 curriculum materials, and significant public programming exploring themes of labor and immigration, and the changing nature of work and community in New Bedford's commercial fishing industry.
DATE:
-
TEAM MEMBERS:
Laura Corinne Orleans
resourceprojectProfessional Development, Conferences, and Networks
This CAREER proposal focuses on the development of teachers' identities, which are operationalized as beliefs and practices, behaviors, and pedagogical knowledge. The PI uses a qualitative approach, occurring over two phases, to investigate the impact of formal-informal collaborations on identity development over time. The study is grounded in an ecological theoretical approach that incorporates a view of informal learning settings as learner-driven and unique in providing opportunities for interaction with objects during meaning-making experiences among groups of learners. The longitudinal research design includes collection of an array of data, including observations of teaching and learning activities, interviews, survey responses, and archival documents such as student work and videos of classroom experiences. The PI uses a narrative analysis and a grounded theoretical approach to generate themes about beliefs and practices around behaviors and pedagogical knowledge informed by informal science education experiences.
Research findings and related educational activities inform the field's understanding of best practices of integrating informal science activities into science teacher education, including determining appropriate kinds of support for STEM teachers who learn to teach in informal learning environments (ILE). The PI is integrating research findings in the revision of existing courses and the development of new courses and experiences for both new and experienced teachers. The project addresses the need for empirical evidence of impacts of ILE experiences on professional development, and will build capacity of informal science institution and university professionals to provide effective teacher education experiences and new teacher support.
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
For nearly 20 years, the UAB Center for Community OutReach Development (CORD) has conducted SEPA funded research that has greatly enhanced the number of minority students entering the pipeline to college and biomedical careers, e.g., nearly all of CORD’s Summer Research Interns since 1998 (>300) have completed/are completing college and most of them are continuing on to graduate biomedical research and/or clinical training and careers. CORD’s programs that focused on high and middle school students have drawn many minority students into biomedical careers, but a low percentage of minority students benefit from these programs because far too many are already left behind academically in grades 4-6, due, at least in part, to a significant drop in science grades between grades 4 and 6, a drop from which most students never recover. A major contributor to this effect is that most grade 4-6 teachers in predominantly minority schools lack significant formal training in science and often are not fully aware of the great opportunities offered by biomedical careers.
In SEEC II, CORD will deliver intensive inquiry-based science training to grade 4-6 teachers, providing them with science content and hands-on science experiences that will afford their student both content and skills that will make them excited about, and competitive for, the advanced courses needed to move into biomedical research careers. SEEC II will also link teachers together across the elementary/middle school divide and bring the teachers together with administrators and parents, who will experience firsthand the excitement that inquiry learning brings and the significant advancement it provides in science and in reading and math. At monthly meetings and large annual celebrations, the parents, teachers and administrators will learn about the opportunities that biomedical careers can provide for the student who is well prepared. They will also consider the financial and educational steps required to ensure that students have the ability to reach these professions.
SEEC II will also expand CORD’s middle school LabWorks and Summer Science Camps to include grade 4-5 students and provide the teachers with professional learning in informal settings. During summer training, in small groups, the teachers will expand one of the inquiry-based science activities that they complete in the training, and they will use these in their classrooms and communicate with the others in their group to perfect these experiences in the school year. Finally, the teachers and grade 4-5 students will develop science and engineering fair-type research projects with which they will compete both on the school level and at the annual meeting. Thus, the students will share with their parents the excitement that science brings. The Intellectual Merit of SEEC II will be to test a model to enhance grade 4-6 teacher development and vertical alignment, providing science content, exposure to biomedical scientists and training in participatory science experiments, thus positioning teachers to succeed. The Broader Impacts will include the translation and testing of a science education model to assist minority students to avoid the middle school plunge and reach biomedical careers.