Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.

The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.

This award is being co-funded with the Office International and Integrative Activities.
DATE: -
TEAM MEMBERS: Bruce MacFadden
resource project Public Programs
The goal of the project is to advance understanding of basic questions about learning and teaching through the development of a theory of embodied mathematical cognition that can apply to a broad range of people, settings and activities. The investigative team brings together expertise from a range of quantitative and qualitative research methodologies. A theory of embodied mathematical cognition empirically rooted in classroom learning and workplace practices will broaden the range of activities and emerging technologies that count as mathematical, and help educators to envision alternative forms of bodily engagement with mathematical problems.
DATE: -
TEAM MEMBERS: Ricardo Nemirovsky Rogers Hall Martha Alibali Mitchell Nathan Kevin Leander
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Media and Technology
Education stakeholders from advocates to developers are increasingly recognizing the potential of science games in advancing student academic motivation for and interest in science and science careers. To maximize this potential, the project will use science games (e.g. Land Science, River City, and EcoMUVE), shown to be enjoyable to students and proven to promote student learning in science at the middle school level. Through a two-phase process, games will be used as vehicles for learning about ways to change how students think about science and potentially STEM careers. The goal of the intervention is to explore which processes and design features of science games will actually help students move beyond a temporary identity of being a scientist or engineer (as portrayed while playing the game) to one where students began to see themselves in real STEM careers. Students' participation will be guided by teams of teachers, faculty members, and graduate students from Drexel University and a local school. All science students attending the local inner city middle school in Philadelphia, PA, will participate in the intervention.

Using an exploratory mixed-method design, the first two years of the project will focus on exploring, characterizing, coding, and analyzing data sets from three large games designed to help students think about possible careers in science. During year 3, the project will integrate lessons learned from the first two years into the existing middle school science curriculum to engage students in a one-year intervention using PCaRD (Play Curricular activity Reflection Discussion). During the intervention, the PI will work with experts from Drexel University and a local school to collect data on the design features of Land Science to capture identity change in the science identity of the participating students. Throughout the course of year 3, the PI will observe, video, interview, survey, and use written tasks to uncover if the Land Science game is influencing students' identity in any way (from a temporary to a long-term perspective about being a scientist or engineer). Data collected during three specified waves during the intervention will be compared to analyses of existing logged data through collaborations with researchers at Harvard University and the University of Wisconsin-Madison. These comparisons will focus on similar middle-aged science students who used the same gaming environments as the students involved in this study. However, the researcher will intentionally look for characteristics related to motivation, science knowledge, and science identity change.

This project will integrate research and education to investigate learning as a process of change in student science identity within situated environmental contexts of digital science gameplay around curricular and learning activities. This integrated approach will allow the researcher to explore how gaming is inextricably linked to the student as an individual while involved in the learning of domain specific content in science. The collaboration among major university and school partners; the expertise of the researcher in educational psychology, educational technology, and science games; and the project's advisory board makes this a real-life opportunity for the researcher to use information that naturally exists in games to advance knowledge in the field about the value of gaming to changing students' science identities. It also responds to reports by the National Research Council committee on science learning and computer games, which identifies games as having the potential to catalyze new approaches to science learning.
DATE: -
TEAM MEMBERS: Aroutis Foster
resource project Media and Technology
Purpose: The United States (U.S.) has traditionally produced the world’s top research scientists and engineers, leading to breakthrough advances in science and technology. Despite the importance of STEM careers, many U.S. students are not graduating with strong STEM knowledge, skills or interests, and the percentage of students prepared for or pursuing STEM degrees or careers is declining. Research shows that the decreased interest in STEM typically begins in the middle school years, pose significant academic and social challenges for students. This project will develop a web-based game teach 6th to 8th students key scientific inquiry skills, along with the academic mindsets and learning strategies to facilitate engagement and effective science learning.

Project Activities: The researchers will create a prototype by mapping key Next Generation Science Standards and learning goals with concepts and content, and producing a game design document. Following completion of the prototype, the researchers will finalize the server architecture, create the core code systems, concept art, and develop a prototype in order to simulate the final user experience. Iterative refinements will be conducted as needed at major production milestones until the game is fully functional. Once development is complete, the research team will assess the usability and feasibility, fidelity of implementation, and the promise of the game to improve outcomes in a pilot study. In this study, 200 students in 10 classes will participate, with 5 of the classrooms randomly assigned to use the game and 5 who will proceed as normal. All students will complete pre- and post- program surveys assessing their academic mindsets, learning strategies, and science skills.

Product: This project will develop SciSkillQuest, a web-based multiplayer game intended to teach middle school students scientific inquiry skills and to foster academic growth mindsets in science. Students will pursue quests, employing inquiry skills to navigate and succeed in the game, including Questioning, Modeling, Investigating, Analyzing, Computing, Explaining, Arguing, and Informing. The game will include different paths to a solution, role playing elements, immersive narratives, challenge-based progressions, and peer collaboration to engage players. The growth mindset message — that ability and skill are developed through effort and learning — will be introduced and reinforced through feedback by embedded in-game characters. The games will be supplemental to the curriculum but will also be designed to be integrated within instructional practice. The game will be available for mobile devices as well as web browsers.
DATE: -
TEAM MEMBERS: Lisa Sorich Blackwell
resource project Media and Technology
Purpose: In the most recent National Assessment of Educational Progress only 17% of 8th grade students performed at or above the proficient level in U.S. history. One way to engage students in learning history is to create history learning resources that are designed to be relevant and appealing to young people's interests and regular activities. Surveys find that almost all teenage boys and girls play digital games, and the majority of teens play daily. This project will leverage the potential of games and technology to engage students and increase history skills and content knowledge.

Project Activities: The team, consisting of graphic artists, content specialists, computer scientists, and programmers, will initially create wireframes and a functional game prototype. Following feedback from a group of students and teachers on the user-interface, the team will produce an online tablet app. Iterative refinements will be conducted at major production milestones until the intervention is fully functional. Once development is complete, the researchers will assess the usability and feasibility, fidelity of implementation, and the promise of the product to improve outcomes in a pilot study. The study will include 200 8th grade students in eight classrooms. Four classrooms will be assigned to play to game as part of the curriculum over three to five class periods, and four classrooms will be taught the same historical content using the business as usual curriculum without the game. Each group will complete pre- and post- assessments to assess differences in history knowledge and skills.

Product: This project team will develop a tablet-based interactive role-playing game that immerses 5th through 9th grade students in the history of the Great Depression. The game will provide players an experiential understanding of the hardships that beset Americans in the 1930s and their strategies for survival, as individuals and as a nation. Features of the game will include story-based immersive narrative missions where student's decisions continually drive the action, tips and hints for students who are struggling in the game, writing tools, and interactive maps. The game will can be integrated within a course or used as a supplement. A teacher dashboard will be developed to facilitate the use of the game within classroom settings. Finally, the final product will include upgrades to existing games, including City of Immigrants and the The Hardest Times. The upgrades will publish these games to tablets and will include deeper in-game assessment opportunities.
DATE: -
TEAM MEMBERS: David Langendoen
resource project Media and Technology
Purpose: An estimated 5 to 8% of elementary school students have some form of memory or cognitive deficit that inhibits learning basic math. Researchers have identified several areas where children with math learning difficulties struggle. These include a strong sense of number facts to quickly and accurately perform operations on single digit numbers, the use of strategies to solve problems which have not yet been memorized, a sense to figure out whether or not an answer is reasonable, and self-monitoring to assess one's own efficacy and understanding. To support students with math learning difficulties in grades 1 to 4, this project team will develop a series of apps for touch-screen tablets that encourage single digit operational fluency, conceptual understanding, strategy awareness, and self-understanding.

Project Activities: During Phase I project in 2012, the research team developed a prototype of the single digit addition game, following an iterative process incorporating feedback from teachers and students having difficulty with math. Nineteen students participated in a pilot study, and the researchers found that the prototype functioned well and that users were engaged by the game. In Phase II, the team will build and refine the back end system, design and develop the teacher website, and create content for games in subtraction, multiplication, and division. Researchers will carry out a pilot test of the usability and feasibility, fidelity of implementation, and promise of the game to improve learning. Students in first to fourth grade identified by teachers as having the greatest difficulty with math will participate in the pilot study. Half of the 120 students participating in the pilot study will be randomly selected to play the game as a supplement to classroom learning whereas the other half will not have access. Students in the control group will be provided the games at the end of the study. Analyses will compare pre- and post-test math scores.

Product: The web-based game, MathFacts, will include a series of apps for touch-screen tablet computers to support math learning for 1st to 4th grade students with major or sometimes intractable learning difficulties. In the game, students will learn content through mini-lessons, engage with problems in practice and speed rounds, and then receive formative feedback on their performance. Students will use and manipulate blocks, linker tubes, number lines, and interact with engaging pedagogical agents such as parrots and sloths. Students will set goals, advance to more challenging levels, and engage in competition. The game will be self-paced and will provide individualized formative assessment scaffolding when students do not know the answer to a question. A teacher management system will support professional development and will produce reports to guide instruction. The intended outcomes from gameplay will include increased fluency, conceptual understanding, strategy awareness, self-assessment, and motivation of basic math.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
Purpose: There is concern about a decline in mathematics achievement scores among U.S. students during the middle school years. For example, while 4th grade U.S. students rank 8th overall on an international mathematics comparison, by 10th grade U.S. student's drop significantly to 25th in the same comparison. Some researchers posit that much of this decline relates to how math is taught in the U.S. and with how students become less engaged as learners in middle school. The purpose of this project is to develop a web-based game to engage 7h grade students in a narrative-based story which will apply learning of content and skills aligned to the Common Core State Standards (CCSS) in mathematics.

Project Activities: During Phase I in 2012, the team developed a functioning prototype and conducted usability and feasibility research with fourteen 7th grade students. Researchers found that the prototype functioned as intended and that students were highly engaged while playing the game. In Phase II, the team will develop a fully-functional user interface with animated characters, interactivity across student users, narrative scripts and accompanying art assets, 36 problem sets, and student and teacher dashboards and databases. After development is complete, a pilot study will examine the usability and feasibility, fidelity of implementation, and the promise of the game to improve math learning. The study will include 120 students in 6 classrooms in three schools, with one classroom per school randomly assigned to use the game and the other half assigned to a business-as-usual control. Analyses will compare student scores on pre and post mathematics measures.

Product: Empires is a web-based game that addresses 36 pre-algebra Common Core State Standards in mathematics for 7th and 8th grades. The game follows a storyline in a recreation of an ancient empire which is at the brink of agricultural revolution and of becoming a trade economy. As students play the game, they engage in math-focused activities to drive the action, such as taxing citizens to learn ratios and proportions, allocating resources to learn percentages, and measuring the distance and time between a neighboring empire by applying the principles of the Pythagorean Theorem. As a socially networked game, students will interact with other students in the class to complete trades that lead to encounters with different math problems. The game will include two helpful, funny, advisors who will scaffold learning through mathematical discourse, arguing over the next most important thing to do. The game design architecture will work on a wide range of computers, including desktops and iPads. A teacher's guide and companion website will provide guidance to classroom activities that complement the game.
DATE: -
TEAM MEMBERS: Scott Laidlaw
resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource project Public Programs
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?

The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.

The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
DATE: -
TEAM MEMBERS: Nancy Walsh Kathleen Tinworth Andrea Giron Ka Yu Lynn Dierking Megan John Polly Andrews John H Falk
resource project Professional Development, Conferences, and Networks
QuarkNet is a national program that partners high school science teachers and students with particle physicists working in experiments at the scientific frontier. These experiments are searching for answers to fundamental questions about the origin of mass, the dimensionality of spacetime and the nature of symmetries that govern physical processes. Among the experimental projects at the energy frontier with which QuarkNet is affiliated is the Large Hadron Collider, which is poised at the horizon of discovery. The LHC will come on line during the 5-years of this program. QuarkNet is led by a group of teachers, educators and physicists with many years of experience in professional development workshops and institutes, materials development and teacher research programs. The project consists of 52 centers at universities and research labs in 25 states and Puerto Rico. It is proposed that Quarknet be funded as a partnership among the ESIE program of EHR; the Office of Multidisciplinary Activities and the Elementary Particle Physics Program (Division of Physics), both within MPS; as well as the Division of High Energy Physics at DOE.
DATE: -
TEAM MEMBERS: Mitchell Wayne Randal Ruchti Daniel Karmgard
resource project Media and Technology
Great Lakes Science Center (GLSC), home of the NASA Glenn Visitor Center, is dedicated to sharing NASA content to inform, engage, and inspire students, educators, and the public. To further this goal, GLSC will develop a digital experience focused on collaboration and teamwork, emphasizing the benefits of a systems approach to STEM challenges. At the recently, fully renovated NASA Glenn Visitor Center, GLSC visitors will embark on an exciting mission of discovery, working in teams to collect real data from NASA objects and experiences. Mobile devices will become scientific tools as students, teachers, and families take measurements, access interviews with NASA scientists, analyze results from Glenn Research Center (GRC) test facilities, and link to NASA resources to assemble mission-critical information. This initiative will provide experiences that demonstrate how knowledge and practice can be intertwined, a concept at the core of the Next Generation Science Standards. GLSC’s digital missions will engage students and families in STEM topics through the excitement of space exploration. In addition, this project has the potential to inform the design of future networked visitor experiences in science centers, museums and other visitor attractions.
DATE: -
TEAM MEMBERS: Kirsten Ellenbogen