"Birds in the Hood" or "Aves del Barrio" builds on the Cornell Laboratory of Ornithology's (CLO) successful Project Pigeon Watch, and will result in the creation of a web-based citizen science program for urban residents. The primary target audience is urban youth, with an emphasis on those participating in programs at science centers and educational organizations in Philadelphia, Tampa, Milwaukee, Los Angeles, Chicago and New York. Participants will develop science process skills, improve their understanding of scientific processes and design research projects while collecting, submitting and retrieving data on birds found in urban habitats. The three project options include a.) mapping of pigeon and dove habitats and sightings, b.) identifying and counting gulls and c.) recording habitat and bird count data for birds in the local community. Birds in the Hood will support CLO's Urban Bird Studies initiative by contributing data on population, community and landscape level effects on birds. Support materials are web-based, bilingual and include downloadable instructions, tally sheets, exercises and results. The website will also include a web-based magazine with project results and participant contributions. A training video and full color identification posters will also be produced. The program will be piloted at five sites in year one, and then field-tested at 13 sites in year two. Regional dissemination and training will occur in year three. It is anticipated that 5,000 urban bird study groups will be in place by the end of the funding period, representing nearly 50,000 individuals.
DATE:
-
TEAM MEMBERS:
Rick BonneyJohn FitzpatrickMelinda LaBranche
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
Quarked!™ is a collaborative physics education project at the University of Kansas that provides engaging and educational science experiences for youth ages 7 and up, educators and the general public. This multimedia project material focuses on concepts of scale and matter, and presents subatomic particles as relatable characters in both human and quark or electron form that explore science through story-driven adventures. It includes a comprehensive website with a range of materials including animated videos, games, apps, FAQs and lesson plans, as well as hands-on education programs at the University of Kansas Natural History Museum. Initially, funded through an NSF EPSCoR grant (Grant No. EPS-0236913 and matching support from the State of Kansas through the Kansas Technology Enterprise Corporation and EPP-0354836), this projects continued to grow and new resources have been added through funding from the Kauffman Foundation, Google grants and other NSF awards. Quarked.org attracts more than 75,000 unique visitors annually, local PBS television stations in Kansas and Missouri broadcast the 3D animated videos, and the museum programs have reached more than than 5,000 school participants and continue to be offered.
The Science Museum of Minnesota (SMM) will develop Window on Catalhoyuk: An Archaeological Work in Progress. The project will include a 4,500 sq. ft. exhibit, a World Wide Web site, an exhibit cookbook for archaeology interactives developed for the exhibit, and a suite of related classroom activities. Catalhoyuk is currently the most important archaeological site in Turkey and among the most significant cultural heritage monuments in the world. It consists of two mounds located on either side of an ancient river channel. The larger mound has Early Neolithic age occupation levels (9000 and 7500 years ago) and represents one of the largest known Neolithic settlements, holding links to the beginnings of agriculture, animal domestication, and the rise of urban complexity. The smaller mound consists of more recent occupations (7500 to 5000 years ago). Together they may record nearly 10,000 years of human occupation. SMM has been a partner, along with the Turkish team, in the Catalhoyuk Research Project since its inception in 1993 and has the responsibility of developing public programs and for bringing the research findings before a worldwide audience. Unlike a traditional approach where the results of archaeological research appear years after the excavations, this project will focus on the process of archaeology giving visitors the opportunity of learning about the workings of contemporary archaeology and the nature of scientific inquiry, along with the important insight into the beginning of Mediterranean civilization. The exhibit will be updated annually for two years to reflect new results of ongoing fieldwork. The project addresses the National Science Education Standards, particularly those related to science as inquiry and to the history and nature of science.
DATE:
-
TEAM MEMBERS:
Donald PohlmanNatalie RuskOrrin Shane
The Education Development Center, Incorporated, requests $2,081,018 to create informal learning opportunities in science, mathematics, engineering and technology utilizing the study of the ancient African civilization of Nubia as context. Educational activities and resources will be developed based on the extensive ongoing archeological research on historical Nubia. The two main components of the project are a traveling exhibit with related educational materials and a website that will provide the target audience an opportunity to access extensive on-line resources and activities. The project will provide community outreach and professional development for educators in museums, community groups, schools and libraries. The project is designed for thirty-six months' duration. In year one, a network of collaborators in the Boston area will focus on research and development; in year two, project materials will be piloted and evaluated in six cities, and on-line professional development programs will be conducted; and in year three, project materials will be disseminated directly to 60 sites and more broadly via the internet.
Two 8 to 10 week modules, one focusing on cells and the other on reproduction and heredity, serve as the basis for the development of a comprehensive, assessment-driven, middle school science curriculum called "Science for Today and Tomorrow." A curriculum frramework is developed for Life and Physical Sciences to be taught in Grades 6 and 7 and Earth Science in Grade 8. The research-based materials assist students to develop a working knowledge of a core set of ideas that are fundamental to the discipline and ultimately to see how the concepts span the disciplines. The student materials and the teachers' guides are enhanced with classroom-tested assessments and web-based content resources, simulations and tools for gathering and interpreting data. On-line professional development materials allow teachers to gain content knowledge and pedagogical skills. The website also contains an area that provides information for administrators including strategies for supporting teachers and another area for community members to involve them in the students' science learning. The project builds upon the lessons learned in previous materials development projects at TERC.
Twin Cities Public Television is producing the second and third seasons of Dragonfly TV, the science television series targeted at children ages 9 - 12. The series presents children showing their own scientific investigations and sharing the excitement that comes from making their own discoveries. Adult scientists are interspersed among the several groups of children who present research. They present their own research, their discoveries and their love of science. These adult reports are laced with home movies and snapshots of the adults when they were kids, linking childhood experiences to successful careers in science. Outreach for Dragonfly TV consists of a Dragonfly insert in the magazine Explorations, an interactive website where children can share their science investigations and programs at selected Boys and Girls Clubs of America and 4H Clubs. Teacher's Guides will be developed by Miami University of Ohio and distributed through the journals of the National Science Teachers Association.
The World Media Foundation is producing and distributing "Emerging Science of Environmental Change." This radio-based project presents new and cutting edge research to the public through National Public Radio broadcasts, Internet radio broadcasts, multi-media web presentations, Internet-based discussion, formal school curricula and public lectures. The goal of the project is to provide the public with a longitudinal view of how those engaged in cutting-edge science formulate theories, structure their inquiries and monitor the ongoing processes, pitfalls, unexpected results and successes of their research. The production team will closely follow the work and processes of one or more research teams over major portions of the 36-month project in order to provide an in-depth understanding of the research process. The project will deliver nine one-hour radio specials and nine additional hours of shorter program segments that will be included in the NPR "Living on Earth" series. The online component of the project will present expanded versions of the audio through its daily web radio service, as well as multi-media web pages with references and discussions linked to the core subjects of the specials. School outreach will be directed primarily at largely urban, under-served middle and high schools. It will use the audio and multi-media web presentations of current research as frames of reference for student instruction in environmental science.
The Tech Museum of Innovation is producing a 3,000 square-foot permanent exhibition, complementary online acitivities, and a Design Challenge curriculum to engage visitors in the exploration of Internet techologies. The goals of the project are to enhance the technological literacy of middle school students, provide the general public with tools, experience, and confidence to participate in shaping the future of the internet, and advance the informal science education community through applied research in networked exhibit technology. Two distinct features of the exhibit are: 1) The Smart Museum, a computer network linking gallery and online expereinces, and 2) "dynamic content," a set of strategies for rapid exhibit updates that will mirror the changing Internet for the life of the exhibition. The Design Challenge curriculum will be used at the museum, in outreach to classrooms and community centers, and in training sessions for science educators. The summative research will be shared with the science education community via The Tech's web site as well as professional seminars, publications and conferences.
Massachusetts General Hospital, representing Partners HealthCare System, Inc., is producing a large format film on the brain that is designed to increase the popular understanding of brain biology and recent advances in neuroscience. Framed within the larger question of the unique abilities of the human mind, the project will take an interdisciplinary look at brain science and raise questions about the nature and biological basis of diverse aspects of human experience including consciousness. By following a rider in the Tour de France, the film will illustrate how the brain functions in both normal and stressful situations. Major sequences will explore vision, memory and emotion. Slightly shorter sequences will delve into imagination and creativity, language, dreams and pain. Brief "interludes" will allow the film to reflect on the brain as it is represented in a range of human capabilities. Finally, the film turns it attention to consciousness, self-awareness and the totality of experiencing life as a human. Outreach components of the project include: A weeklong national symposium for museum educators, teachers, and community organizations from all regions of the country. Follow up regional "Brain Workshops" designed to provide more focused project support. "The Brain: Exploratory Trips Into the Final Frontier" -- An Educator/Student Activity Guide Fun Facts Family Guide to "The Brain" An Educational Lobby Kiosk "Head Trip: A Voyage Through the Young Human Mind" -- An illustrated instructional brochure A Brain Website The film will be directed by Bayley Silleck whose prior large format films include "Cosmic Voyage" and "Lost Worlds: Life in the Balance." The lead scientific advisors are Dr. Dennis Selkow, Professor of Neurology and Neuroscience at Harvard Medical School, and Dr. Anne Young, Julieanne Dorn Professor of Neurology at Harvard Medical School. There also will be a seven-member advisory committee composed of neuroscientists, psychologists and philosophers.
Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE:
-
TEAM MEMBERS:
Brenda StegallJanet StantonHeather Johnston NicholsonShalonda MurrayJoe Martinez
The Learning Research and Development Center at the University of Pittsburgh has designed a research project to examine the process of and outcomes of informal (out of school) web-based learning. "Conceptualizing and Assessing Web-based Informal Science Education" will be a three-year research study to document and analyze how the informal learner, both as an individual and in a social group, uses and learns from web-based activities. The PIs will also develop a framework and tools for evaluating informal web-based learning environments and guidelines for effective web-based learning activities. This research will use web sites developed by museums and that are complementary to exhibits in those museums. These sites are being selected because according to the PIs, "museums and other nonprofit developers are already going beyond traditional content to create true virtual informal learning environments." The outcomes of this research will include a better understanding of the cognitive and social processes that occur as learners engage in web-based activities; a framework and tools for evaluating informal web-based learning activities; and a web-based annotated bibliography relevant to this research.