As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE:
-
TEAM MEMBERS:
Jeyamkondan SubbiahEric ThompsonDeepak KeshwaniRichard KoelschDavid Rosenbaum
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.
This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE:
-
TEAM MEMBERS:
David WatkinsBuyung AgusdinataChelsea SchellyRachael ShwomJenni-Louise Evans
Well-designed educational games represent a promising technology for increasing students interest in and learning of STEM topics such as physics. This project will research how to optimally combine and embed dynamic assessment and adaptive learning supports within an engaging game design to build effective educational games. The project will add enhancements to a physics game called Physics Playground. The general goal of this research is to test a valid methodology that can be used in the design of next-generation learning games. The enhancement of Physics Playground will leverage the popularity of video games to capture and sustain student attention and teach physics to a much broader audience than is currently the case in traditional physics classrooms. To be most effective, this new genre of learning games needs to not only be highly engaging as a game but also to provide real-time assessment and feedback to students; support understanding of science content (i.e.,Newtonian physics); be accessible to beginners; accommodate a range of proficiencies and interests; and support equity. The research will have particular relevance to designers developing other science games and simulation by providing information about the kinds of learning supports and feedback to students are most effective in promoting engagement and learning. The project is supported by the Cyberlearning and Future Learning Technologies Program, which funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively.
The project will systematically develop, test, and evaluate ways to integrate engaging, dynamic learning supports in Physics Playground to teach formal conceptual physics competencies. More generally, the project aims to advance the learning sciences, particularly in the fields of adaptivity and assessment in educational technology. Using a design-based research approach spanning three years, the research team will: (1) develop and test the effectiveness of various learning support features included in the game in Year 1; (2) develop and test an adaptive algorithm to manage the progression of difficulty in game levels in Year 2; and (3) test learning supports and adaptive sequencing in a controlled evaluation study. This research will provide evidence of the instructional effectiveness of an educational game designed using principles of instructional, game, and assessment design. It will advance understanding of the contributions of different kinds of learning supports (e.g., visualizations and explanations) and adaptivity to game-based learning and contribute to the design of next-generation learning games that successfully blur the distinction between assessment and learning. The project will generate research findings that can be incorporated into other types of STEM learning games.
DATE:
-
TEAM MEMBERS:
Valerie ShuteRussell AlmondFengfeng Ke
The project will research and further develop an interactive platform, Visitor Interactions in Microbiology (VIM), that enables museum visitors to influence and learn about the behavior of live microorganisms. Hands-on museum exhibits encourage visitors to engage with, and manipulate, scientific content. Currently, museum visitors experience microbiology by observing microorganisms through a microscope, through models, or through simulations, all of which limit interactivity. With the VIM platform, visitors draw on a screen or use a Kinect motion sensor to generate microscopic light images. The single celled organisms respond to these images in real-time. Preliminary testing shows that the platform has significant potential to promote prolonged engagement and science inquiry by visitors. The project will develop and research additional technological and design considerations to understand how VIM can be translated into effective museum exhibits. This project is supported by the Advancing Informal STEM Learning (AISL) program which funds research and innovative resources for use in a variety of settings as a part of its overall strategy to enhance learning in informal environments.
Project researchers will first compare VIM to existing microscopic exhibits to investigate both advantages as well as limitations with the platform. Based on that research, three iterations of prototypes of VIM and user testing will explore possible extensions of VIM with respect to modes of visitor interactions, types of organisms and types of stimuli. In addition to improving the VIM platform, the knowledge gained from this study will inform a new approach to informal science learning -- an approach that supports self-directed inquiry, interest in microbiology, and interest in underlying technology. The project will produce: (1) research results concerning the potential of VIM and the variety of interaction modes that are effective using the system and (2) an open-source catalogue of hardware, software and protocol instructions that will enable other institutions to take advantage of the research on VIM. Project research findings and resources will be widely disseminated to practitioners via conferences and professional journals. The research will provide the foundation for future work that will include the design of a permanent exhibition.
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.
Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.
The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.
This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Michael HornBrian MagerkoJason Freeman
The connections between technology applications of all sorts and human users that are ubiquitous in informal learning and assume a great deal about how the technology is used and how learning takes place. Much of the research in this area has been focused on game design and interaction. This project will examine this interaction involving the use of gestures that represent how individuals work with systems and large data sets that represent complex systems like the oceans, to understand how basic elements of a project with a 3-D type of design might enhance the user experience and increase the utility and learning that takes place by understanding the cognitive elements of these game like interactions in specific STEM related settings like museums.
This exploratory pathways project will investigate the use of interactive, gesture-enabled, multi-touch spheres for teaching about ocean systems in science centers and museums. The gesture-enabled aspect of the project will improve on interactive table-top installations which can frustrate users who use unexpected gestures and receive no response leading to brief interaction and abandonment without significant interaction or learning. The project will investigate ways in which unsupported gestures would still produce a system response which would encourage the user to remain at the installation and continue to investigate. The effect of multiple gestures will be supported by using natural mappings between gestures and interactions with the on-sphere data.
The project investigates theories of embodied cognition that support the notion that by engaging with global-scale datasets on a spherical display more effectively models the earth in a non-distorted manner and therefore will be more natural and allow users to develop a more accurate conceptual model of how data relates to itself and the globe. In this way, the project shares some aspects of understanding about learning through game play. The sphere will not be a fully developed game but will share characteristics of game play.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This is the fifth volume of the annual proceedings for the Games+Learning+Society (GLS). The GLS conference is a premier event for those from both academia and industry interested in videogames and learning. The GLS conference is one of the few destinations where the people who create high-quality digital learning media can gather for a serious think about what is happening in the field and how the field can serve the public interest. The conference offers an opportunity for in-depth conversation and social networking across diverse disciplines including game studies, education research
DATE:
TEAM MEMBERS:
Kyrie CaldwellSean SeylerAmanda OchsnerConstance Steinkuehler
This is the fourth volume of the annual proceedings for the Games+Learning+Society (GLS). The GLS conference is a premier event for those from both academia and industry interested in videogames and learning. The GLS conference is one of the few destinations where the people who create high-quality digital learning media can gather for a serious think about what is happening in the field and how the field can serve the public interest. The conference offers an opportunity for in-depth conversation and social networking across diverse disciplines including game studies, education research
DATE:
TEAM MEMBERS:
Amanda OchsnerJeremy DietmeierCaroline WilliamsConstance Steinkuehler
This is the third volume of the annual proceedings for the Games+Learning+Society (GLS). The GLS conference is a premier event for those from both academia and industry interested in videogames and learning. The GLS conference is one of the few destinations where the people who create high-quality digital learning media can gather for a serious think about what is happening in the field and how the field can serve the public interest. The conference offers an opportunity for in-depth conversation and social networking across diverse disciplines including game studies, education research
DATE:
TEAM MEMBERS:
Caroline WilliamsAmanda OchsnerJeremy DietmeierConstance Steinkuehler
This year we are pleased to be publishing the second volume of the annual proceedings for the Games+Learning+Society (GLS) Conference. For eight years now, GLS has been a valued event for individuals working in academia, industry, and as practitioners in schools to come together around their shared interest and passion for videogames and learning. This conference is one of the few destinations where the people who create high-quality digital learning media can gather to discuss and shape what is happening in the field and how the field can serve the public interest. GLS offers an opportunity
DATE:
TEAM MEMBERS:
Crystle MartinAmanda OchsnerKurt Squire
This is the first volume of the annual proceedings for the Games+Learning+Society (GLS). The GLS conference is a premier event for those from both academia and industry interested in videogames and learning. The GLS conference is one of the few destinations where the people who create high-quality digital learning media can gather for a serious think about what is happening in the field and how the field can serve the public interest. The conference offers an opportunity for in-depth conversation and social networking across diverse disciplines including game studies, education research
DATE:
TEAM MEMBERS:
Constance SteinkuehlerCrystle MartinAmanda Ochsner