SETAC is funded by the Lifelong Learning Programme of the European Union and emerges out of the need to undertake specific action for the improvement of science education. It regards science education as among the fundamental tools for developing active citizens in the knowledge society. SETAC draws on the cooperation between formal and informal learning institutions, aiming to enhance school science education and active citizenship looking further into the role of science education as a lifelong tool in the knowledge society. On the day of the project’s conclusion, 31 October 2010, after two years of work SETAC contributes the following products and results to the field: 1. “Quality Science Education: Where do we stand? Guidelines for practice from a European experience” This is the concluding manifesto that presents the results of the SETAC work in the form of recommendations for practitioners working in formal and informal science learning institutions; 2. “Teaching and Learning Scientific Literacy and Citizenship in Partnership with Schools and Science Museums” This paper constitutes the theoretical framework of the project and innovative ways of using museums for science education and develop new modes of linking formal and informal learning environments; 3. Tools for teaching and learning in science: misconceptions, authentic questions, motivation. Three specific studies, leading to three specific reports, have been conducted in the context of the project, looking in particular into notions with an important role in science teaching and learning. These are on: Children’s misconceptions; Authentic questions as tool when working in science education; Students’ attitudes and motivation as factors influencing their achievement and participation in science and science-related issues; 4. Activities with schools: SETAC developed a series of prototype education activities which were tested with schools in each country. Among the activities developed between the partners, two have been chosen and are available on-line for practitioners to use and to adapt in their own context. These are: The Energy role game, a role game on Energy invites students to act in different roles, those of the stakeholders of an imaginary community, called to debate and decide upon a certain common problem; MyTest www.museoscienza.org/myTest, which aims to encourage students to engage in researching, reflecting and communicating science-oriented topics; 5. European in-service training course for primary and secondary school teachers across Europe. The training course is designed in such a way as to engage participants in debate and exploration of issues related to science education and active citizenship. The course is open to school teachers, headteachers and teacher trainers from all EU-member and associate countries. Professionals interested can apply for a EU Comenius grant. All the products of the project as well as information about the training course are available at the project website, some of them in more than one languages: www.museoscienza.org/setac
Climate change science is becoming a more frequent and integral part of the middle school curriculum. This project, NASA Data in My Field Trip, proposes to leverage a regional network of Informal Science Institutions (ISIs) committed to climate change education, the Global Climate Change Consortium (GC3). This project will support climate change education in the formal curriculum by creating opportunities for inquiry-based exploration of NASA data and products in class and as part of already established field trip experiences to ISIs. The ISIs of the recently formed GC3 include a broad range of science-based institutions including Carnegie Museum of Natural History (CMNH), Carnegie Science Center (CSC), Phipps Conservatory and Botanical Gardens, National Aviary, and the Pittsburgh Zoo and PPG Aquarium. Partners, Pittsburgh Public Schools and Wilkinsburg School District have respectively 70 and 99% minority populations. NASA Data in My Field Trip will build innovative connections among NASA data and products, ISI resources and experiences, curriculum standards, and educators in formal and informal environments. It has three components: (1) joint professional development for formal and informal educators, (2) in-class pre-field trip data explorations, and (3) the integration of NASA resources into ISI field trip experiences. In the first phase of NASA Data in My Field Trip, CMNH and CSC will pilot NASA resources as central components of middle school climate change field trips as well as in pre-visit experiences. In the second phase, three other GC3 ISIs will tailor the pilot products to their climate change field trips. In both phases, formal and informal educators will participate in joint professional development. Alignment with the school districts' curriculum and formative evaluation is critical at all steps of this project and will guide and inform the implementation of the project through both phases. The success of the project will be measured in terms of (1) educators’ attitudes toward and ability to use NASA resources, (2) the effectiveness of in-class and field trip experiences for students, (3) the development of a community of practice among informal and formal educators, and (4) the adoption of NASA data and products into informal and formal programming outside of the project’s specified reach. Primary strengths of this project are that it brings NASA resources to underserved schools and includes ISIs that have a commitment to climate change education but have not previously connected with NASA or its resources. Techniques developed in this project will be tailored to a diversity of ISIs and can therefore serve as a replicable model for NASA products throughout the ISI field.
DATE:
TEAM MEMBERS:
Kerry HandronEllen McCallieJohn RadzilowiczPittsburgh Public SchoolsWilkinsburg School DistrictPittsburgh Zoo and PPG AquariumNational AviaryPhipps Conservatory and Botanical Gardens
resourceprojectProfessional Development, Conferences, and Networks
This model science teacher retention and mentoring project will involve more than 300 elementary teachers in "Lesson Study" of inquiry science around school gardens. Drawing on the rich resources of the University of California Botanical Garden and the science educators at the Lawrence Hall of Science this project will develop Teacher Leaders and provide science content professional development to colleagues in four urban school districts. Using the rich and authentic contexts of gardens to engage students and teachers in scientific inquiry opens the opportunity to invite parents to become actively involved with their children in the learning process. As teachers improve their classroom practices of teaching science through inquiry with the help of school-based mentoring they are able to connect the teaching of science to mathematics and literacy and will be able to apply the lesson study approach in their teaching of other innovative projects. Teacher leaders and mentors will have on-going learning opportunities as well as engage participating teachers in lesson study and reflection aimed toward improving science content understanding and the quality of science learning in summer garden learning experiences and having context rich science inquiry experiences throughout the school year.
DATE:
-
TEAM MEMBERS:
Katharine BarrettJennifer White
resourceresearchProfessional Development, Conferences, and Networks
This guide provides effective practices for anyone — university faculty member, K–12 teacher, or administrator — who wants to create a project that partners science, technology, engineering, and mathematics (STEM) graduate students (Fellows) with K–12 teachers on a sustained basis. These recommendations come from the community of faculty members, graduate students, K–12 teachers, program managers, and evaluators who participated in the U.S. National Science Foundation (NSF) Graduate STEM Fellows in K–12 Education (GK–12) Program from its start in 1999 through 2012. The guide was written to
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
This pilot project establishes and implements a professional development model with teachers of Native American students by creating a culturally relevant science, technology, engineering and mathematics (STEM) teacher in-service model for 30 grade 4-6 teachers from schools from two nations in Utah. The in-service program relies on community advisory panels, current standards and best practices in science, mathematics and technology education, by implementing engineering and technology education activities as a means of teaching science and mathematics. The goal is to improve teacher preparation in science and mathematics for Native Americans by creating culturally relevant curriculum materials with the help of community advisory panels and providing each teacher participant with at least 100 hours of structured professional development. The long-range goal is to develop an in-service model that can be transported to other Native American nations and schools. STEM and education faculty, community teachers, parents and leaders, as well as, tribal elders are to work together to assure the professional development model and materials are developed in a culturally inclusive manner. The evidence-based outcome of this project is that Native American students effectively learn mathematics and science with the longer-term influence being improvement in student achievement.
DATE:
-
TEAM MEMBERS:
Kurt BeckerJames BartaRebecca Monhardt
In October 2009, the Tennessee Aquarium began an ambitious program, Connecting Tennessee to the World Ocean (CTWO), funded by a grant from the National Oceanic and Atmospheric Administration. CTWO consists of several individual projects, all intended to increase the ocean literacy of Aquarium audiences and to promote their adoption of an ocean stewardship ethic. This evaluation report summarizes the extent to which the Aquarium accomplished these goals over the 3-year project period. The five project components and their key associated evaluation findings follow. 1. Classroom-based activities
In August 2009, The Ohio State University at Lima (OSU) received a three-year award from the NSF Division of Research on Learning Innovative Technology Experiences for Students and Teachers (ITEST) Program for It's About Discovery (IAD). IAD was a partnership between OSU Lima, the University of North Carolina Greensboro, and regional rural schools in Northwest Ohio and North Carolina that equipped teachers to teach new Ford Partnership for Advanced Study (PAS) science curriculum, focused on the theme of Working Towards Sustainability. Ford PAS is focused on transforming teaching and learning
DATE:
TEAM MEMBERS:
Rucha LondheOhio State UniversityUniversity of North Carolina GreensboroMarkeisha GrantColleen ManningIrene F Goodman
In spring 2009, the Denver Museum of Nature & Science (Museum) contracted with JVA Consulting, LLC (JVA) to conduct a comprehensive process and outcome evaluation of the Passport to Health (P2H) program. The Museum designed P2H, originally a three-year program funded by the Colorado Health Foundation (the Foundation), to improve health outcomes for fifth-grade students as well as their families and teachers throughout the Denver metro area. Passport to Health has seven components, designed to complement each other and help the Museum achieve its stated program goals. The seven components
DATE:
TEAM MEMBERS:
JVA Consulting, LLCDenver Museum of Nature & Science
In an effort to prepare female high school students for a college curriculum and achieve gender parity in the engineering industry, WGBH has developed an initiative entitled, Engineer Your Life (EYL). The initiative is targeted toward female high school students, career counselors/educators, and professional engineers. It is designed to: 1) increase these target audiences' understanding of engineering, 2) inspire young women to explore engineering as a career option and 3) help adults encourage young women to investigate engineering opportunities. One component of this initiative involves
The Sam Noble Museum contracted Randi Korn & Associates, Inc. (RK&A) to evaluate their Whitten-Newman ExplorOlogy Program. The program offers hands-on, immersive experiences in scientific field research to classroom teachers and middle and high school students. The evaluation study explored how participants experienced the program and how their sense of self and identity was affected during the year following the program's completion. How did we approach this study? The Whitten-Newman ExplorOlogy Program offers an in-depth program experience to a select number of teachers and students. We
DATE:
TEAM MEMBERS:
Randi Korn & Associates, Inc.Sam Noble Oklahoma Museum of Natural History
In 2001, The Franklin Institute Science Museum (TFI) received funding from the National Science Foundation to develop and implement Parent Partners in School Science (PPSS). A year project, PPSS was designed to demonstrate how a science museum can facilitate K-4 children's science learning in and out of school, working with teachers and parents from 3 urban elementary schools in Philadelphia. More specifically, three goals have informed the implementation of PPSS: 1) Promote science teaching at the elementary level; 2) Cultivate home-school collaboration in support of students' science
DATE:
TEAM MEMBERS:
Jessica LukeFranklin Institute Science MuseumMartha Washington Academics PlusOlney Elementary SchoolR.B. Pollock Elementary SchoolSusan Foutz