Skip to main content

Community Repository Search Results

resource research Media and Technology
This article presents IMAX films as making science more accessible to the public, but cautions against building spectators rather than participants. It examines a film about Yellowstone while making the case that large-format films serve entertainment rather than scientific purposes.
DATE:
TEAM MEMBERS: Joanna Ploeger
resource project Media and Technology
"Birds in the Hood" or "Aves del Barrio" builds on the Cornell Laboratory of Ornithology's (CLO) successful Project Pigeon Watch, and will result in the creation of a web-based citizen science program for urban residents. The primary target audience is urban youth, with an emphasis on those participating in programs at science centers and educational organizations in Philadelphia, Tampa, Milwaukee, Los Angeles, Chicago and New York. Participants will develop science process skills, improve their understanding of scientific processes and design research projects while collecting, submitting and retrieving data on birds found in urban habitats. The three project options include a.) mapping of pigeon and dove habitats and sightings, b.) identifying and counting gulls and c.) recording habitat and bird count data for birds in the local community. Birds in the Hood will support CLO's Urban Bird Studies initiative by contributing data on population, community and landscape level effects on birds. Support materials are web-based, bilingual and include downloadable instructions, tally sheets, exercises and results. The website will also include a web-based magazine with project results and participant contributions. A training video and full color identification posters will also be produced. The program will be piloted at five sites in year one, and then field-tested at 13 sites in year two. Regional dissemination and training will occur in year three. It is anticipated that 5,000 urban bird study groups will be in place by the end of the funding period, representing nearly 50,000 individuals.
DATE: -
TEAM MEMBERS: Rick Bonney John Fitzpatrick Melinda LaBranche
resource research Media and Technology
The main objective of the CONNECT project is to develop an innovative pedagogical framework that attempts to blend formal and informal learning, proposing an educational reform to science teaching. The project will create a network of museums, science centres and schools across Europe, to develop, apply and evaluate learning schemes by pointing to a future hybrid classroom that builds on the strengths of formal and informal strategies. The proposed approach will impact upon the fields of instructional technology, educational systems design and museum education. It will explore the integration
DATE:
TEAM MEMBERS: Sofoklis Sotiriou Eleni Chatzichristou Stavros Savas Nikolaos Ouzounoglou Lynn Dierking Salmi Hannu Sakari Avi Hoffstein Sherman Rosenfeld
resource research Media and Technology
The Office for Human Research Protections (OHRP) provides a decision chart as a guide for institutional review boards (IRBs), investigators, and others who decide if an activity is research involving human subjects that must be reviewed by an IRB under the requirements of the U.S. Department of Health and Human Services (HHS) regulations at 45 CFR part 46. OHRP welcomes comment on these decision charts. The charts address decisions on the following: whether an activity is research that must be reviewed by an IRB, whether the review may be performed by expedited procedures, and whether informed
DATE:
TEAM MEMBERS: U.S. Department of Health & Human Services
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Media and Technology
Quarked!™ is a collaborative physics education project at the University of Kansas that provides engaging and educational science experiences for youth ages 7 and up, educators and the general public. This multimedia project material focuses on concepts of scale and matter, and presents subatomic particles as relatable characters in both human and quark or electron form that explore science through story-driven adventures. It includes a comprehensive website with a range of materials including animated videos, games, apps, FAQs and lesson plans, as well as hands-on education programs at the University of Kansas Natural History Museum. Initially, funded through an NSF EPSCoR grant (Grant No. EPS-0236913 and matching support from the State of Kansas through the Kansas Technology Enterprise Corporation and EPP-0354836), this projects continued to grow and new resources have been added through funding from the Kauffman Foundation, Google grants and other NSF awards. Quarked.org attracts more than 75,000 unique visitors annually, local PBS television stations in Kansas and Missouri broadcast the 3D animated videos, and the museum programs have reached more than than 5,000 school participants and continue to be offered.
DATE: -
TEAM MEMBERS: Kristin Bowman-James Teresa MacDonald
resource research Media and Technology
Interactives—computers and other multimedia components, physical manipulatives (including whole-body and tabletop activities), and simulations—occur in all types of museums. There is considerable interest in the nature of the learning that happens when visitors use interactives. Museum professionals have enlisted constructivist theory to support the notion that interactive elements are invaluable components of any exhibition experience, and are effective learning tools that enable active visitor engagement. Interactives are also seen as vital to sustaining institutional image and expanding
DATE:
TEAM MEMBERS: John H Falk Carol Scott Lynn Dierking Leonie Rennie Mika Cohen Jones
resource project Media and Technology
The Educational Broadcasting Corporation (WNET) is researching and testing an experimental, short-format television broadcast and Web project entitled "Science InSight." The goal of this experimental research is to determine if short-format television segments can successfully increase Americans' understanding of -- and interest in -- new research in science and technology and, if they can, which of several possible formats is likely to be most successful. During this research and development phase, WNET will test the viability of the project model and develop and refine the model for use in a selected group of media venues such as the forthcoming PBS weekly public affairs program,"Public Square." The specific activities to be undertaken in the research phase include: -assembling an expert board of up to six advisors with expertise in science, science journalism and media; -producing three, experimental, short-format, "program concept" video segments of varying lengths for use as science information pieces in other media programs; -conducting formal and informal testing and evaluation of these test formats for appeal, credibility, clarity and comprehensibility of style and content; and -identifying additional key potential distribution partners from television media, print, Web and science centers outlets.
DATE: -
TEAM MEMBERS: Irwin Shapiro
resource evaluation Media and Technology
In this Summative Evaluation, Goodman Research Group, Inc. found that PEEP effectively models science inquiry skills, including predicting, observing, and problem solving. Children who were exposed to PEEP interacted with materials in ways that were significantly more grounded in science inquiry than children who were not. By a margin of 71% to 22%, for example, children who watched PEEP were more likely to initiate a question to be explored. Children exposed to PEEP were also more likely to use problem-solving strategies (76% compared to 34%) and more likely to solve the problems they
DATE:
TEAM MEMBERS: Jennifer Beck Jennie Murack WGBH Irene F Goodman
resource research Media and Technology
Increasingly, collaboration between business, non-profit, health and educational agencies is being championed as a powerful strategy to achieve a vision otherwise not possible when independent entities work alone. But the definition of collaboration is elusive and it is often difficult for organizations to put collaboration into practice and assess it with certainty. Program evaluators can assist practitioners concerned with the development of a strategic alliance predicated on collaboration by understanding and utilizing principles of collaboration theory. The Strategic Alliance Formative
DATE:
TEAM MEMBERS: Rebecca Gajda
resource evaluation Media and Technology
This formative evaluation gathered feedback from a small sample of third graders in response to a paper design concept of an online, immersive financial literacy game for Cyberchase. The general goals for the research were to assess appeal and clarity of the game structure at an early on-paper stage. Additionally, a larger sample of third graders was surveyed about their money habits. Cyberchase is the Emmy Award-winning mathematics series and website on PBS KIDS GO! using broadcast, web, new media and educational outreach to impact millions nationwide. Designed for children ages 8 to 11 and
DATE:
TEAM MEMBERS: Barbara Flagg Thirteen/WNET
resource evaluation Media and Technology
During two independent half-hour sessions, eight third graders from a Long Island elementary school were observed individually while playing a prototype of the Cyberchase immersive online game, The Quest. Cyberchase is the Emmy Award-winning mathematics series and website on PBS KIDS GO! using broadcast, web, new media and educational outreach to impact millions nationwide. Designed for children ages 8 to 11 and packed with mystery, humor, and action, Cyberchase's mission is to improve kids' problem-solving and math skills, and inspire them with confidence and enthusiasm toward math. The TV
DATE:
TEAM MEMBERS: Barbara Flagg Thirteen/WNET