The Science and Math Informal Learning Education (SMILE) pathway is serving the digital resource management needs of the informal learning community. The science and math inquiry experiences offered by science and technology centers, museums, and out-of-school programs are distinct from those found in formal classrooms. Interactive exhibits, multimedia presentations, virtual environments, hands-on activities, outdoor field guides, engineering challenges, and facilitated programs are just some of the thoughtfully designed resources used by the informal learning community to make science and math concepts come alive. With an organizational framework specifically designed for informal learning resources, the SMILE pathway is empowering educators to locate and explore high-quality education materials across multiple institutions and collections. The SMILE pathway is also expanding the participation of underrepresented groups by creating an easily accessible nexus of online materials, including those specifically added to extend the reach of effective science and math education to all communities. To promote the use of the SMILE pathway and the NSDL further, project staff are creating professional development programs and a robust online community of educators and content experts to showcase best practices tied to digital resources. Finally, to guarantee continued growth and involvement in the SMILE pathway, funding and editorial support is being provided to expansion partners, beyond the founding institutions, to add new digital resources to the NSDL.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.
The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE:
-
TEAM MEMBERS:
Geza GyukPamela GayChristopher LintottMichael RaddickLucy FortsonJohn Wallin
The Space Science Institute is developing an astronomy educational social game for the Facebook platform. The game uses the "sporadic play" model popular with many Facebook games, in which players take only a few actions at a time, then return to explore the results. Here players will create their own stars and planetary systems that evolve over time at a rate of a million years a minute. Players set systems in motion, revisiting the game over days or weeks to make new choices and alter strategies. The game is in effect an end-to-end solar system simulation, following a star from birth to death. As a result it encompasses a wide variety of core concepts in astronomy, including galactic structure, stellar evolution and lifecycles, planetary formation and evolution, and habitability and "habitable zones." The accompanying research program will examine the effectiveness of this type of game in informal education, and the effects of the social network on meeting the education goals, including viral spread, cooperative play, and discussions about the game and its underlying content in associated online forums.
National Geographic Television will develop a television series (tentatively titled "Aqua Kids") and transmedia program to introduce preschoolers and kindergarteners to the wonders and value of water. The goal is to empower young children's innate sense of inquiry and increase early environmental literacy by motivating young learners to make discoveries with water, inside and outside their homes. The grant would allow the National Geographic project team to: 1) research cutting-edge practices for teaching early learners environmental literacy and water principles; 2) convene content and creative advisors; 3) test one storybook and animatic (animated storyboard) with the target audience and their parents; 4) strategize best ways to create a transmedia project that capitalizes on emerging digital platforms, reaches audiences most in need, and takes advantage of National Geographic resources, including National Geographic's ongoing global water conservation outreach missions. Insight Research Group will conduct formative evaluation using the animatic and interviews with parents to help identify barriers to extend the television experience with their children to outdoor activities and beyond. The project partners include Project WET, a youth water education project, NOAA's Office of Marine Sanctuaries, USDA Forest Service, the National Park Service as well as a number of museums and Think It Ink It Publishing. This Pathways Project will allow the project team to complete the groundwork necessary to create an innovative new multiplatform educational media resource. The Water Show will inspire outdoor science play, build inquiry and social skills and create a vital foundation for caring and respecting the most valuable natural resource, water. Fostering early appreciation for how Earth's "green parts" are wholly dependent on its "blue parts" is foundational for subsequent scientific learning and instrumental in building lasting respect for living systems and natural resources.
DATE:
-
TEAM MEMBERS:
Tara SorensenMichelle SullivanTierney ThysSara Zeglin
Sea Studios Foundation will extend the Strange Days on Planet Earth multimedia initiative to raise public science literacy on pressing environmental issues. Based on pioneering Earth System Science research, Phase Two will be a media and outreach project focused on the ocean and water issues. The goal of the project is to increase public awareness and understanding of the scope and scale of key issues affecting the ocean. At the core of the project is a four part television documentary series for PBS primetime entitled Strange Days, Ocean. The programs will concentrate on four content areas: overexploitation of ocean resources, pollution, coastal development, climate change and the role of the ocean in Earth's system. Each episode is structured around a compelling scientific questions designed to engage the audience in a search for answers based on the most current research from the varied Earth System Science disciplines. The series focuses on explaining how scientists come to know what they know. The series will be complemented by activity-based learning supported by a national consortium of informal learning institutions, a citizen science program, training sessions for informal educators, and a project website. Collaborators include the National Geographic and three new major partners: Monterey Bay National Marine Sanctuary Program to expand citizen science programs around invasive species; Americans for Informed Democracy (AID), dedicated to organizing college campus educational events; The Ocean Project (TOP), a network of 600 organizations; plus the Arizona Sonora Desert Museum and eight other informal science institutions. Knight Williams Research Communications, and Public Knowledge and Cultural Logic will assess the impact of the series. The project will contribute to the field of informal science education by providing widely applicable communication lessons on ocean and water issues and a model methodology for creating science education media that is credible, informative, and relevant. The results of two unique adult learning case studies will be shared with the field through presentations at national meetings and workshops, and posted online.
DATE:
-
TEAM MEMBERS:
Mark ShelleyDavid EliscoTierney Thys
This Broad Implementation media project (building upon prior NSF award 0639001) will address science literacy among Latinos via mass media, increasing the amount of Spanish-language science content available in the U.S., increasing the representation of Latino scientists in mainstream media, and expanding the knowledge base about Latino's interest and engagement in science. The STEM content will be based on the research conducted by the Hispanic scientists being interviewed and therefore includes a wide range of topics including astronomy, biology, physics, earth sciences, and engineering. The criteria for selecting the Hispanic researchers and the content is based on the importance of the research, how it is immediately relevant to a Latino audience, and how it draws on the indigenous knowledge system or ethnic pride for U.S. Latinos. Project deliverables include 150 audio-video interviews with Hispanic scientists distributed on both commercial Hispanic radio and TV stations, as well as public broadcasting and online. In addition to the broadcasts, social media tools such as Facebook and Twitter will be used to reach out and engage Hispanics. It is estimated that 300 Spanish-language radio stations will air the programs, resulting in 3 million radio impressions for each daily 60-second broadcast. Television broadcasts are estimated to result in another 2 million impressions per program. Project partners include the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS); V-Me, a national Hispanic educational channel; KLRN, the San Antonio, Texas public television station that will provide the national PBS distribution; and DaGama Web Studio that will develop and implement the social media marketing plan to attract and engage Latinos online. Comprehensive evaluations of project deliverables and impact will be conducted by Informal Learning Solutions (video-audio formative evaluations), and Knight-Williams Research (summative evaluation of project impact). The Summative Evaluation Plan will focus on the programs\' overall appeal, clarity, and effectiveness in meeting the two key audience objectives in the proposal: (1) increasing familiarity with and understanding of science concepts among U.S. Latinos, and (2) demonstrating engagement activities such as talking with friends/family about the presented topics, and/or seeking out additional information. It will furthermore assess the extent to which listeners and viewers find the Hispanic researchers featured in the programs to be effective communicators and the importance they assign to hearing from Hispanic researchers themselves. It will look at whether and how the programs are effective selecting topics with immediate relevance to listeners'/viewers' everyday lives. Finally, the evaluation will gather information about listeners'/viewers' demographic and background characteristics, including their country of origin, degree of fluency in Spanish, reasons for preferring Spanish media, number of generations in the U.S., reasons for tuning into the programming, efforts to recommend the programs to others, and the likelihood of continuing to listen to or view the programs in the future.
StarTalk Radio will develop a highly innovative new genre of science radio that bridges the intersection between popular culture and science education. Host of the show and project PI is Dr. Neil deGrasse Tyson, renowned scientist, astrophysicist, popular science author and director of the Hayden Planetarium in New York City. The radio programs will combine comedy, references to pop culture, and public fascination with space science to reach an untapped audience for the informal science field--those who listen to commercial talk radio call-in shows. The STEM content will include astronomy, astrophysics, astrobiology, space exploration, earth system science, and associated technologies. Goals and intended outcomes of the project include increasing knowledge and interest of space science topics, and motivating audiences to pursue additional learning acitivities as the result of listening to the programs. This project builds on a previous SGER grant (#0852400) which produced 13 pilot programs and was evaluated by Multimedia Research. Project deliverables include 39 one-hour live call-in shows a year for a total of 117 shows over three years, a website, and a business strategy that projects making the radio programs self-sustaining. Dr. Tyson will be the host, and each program will include a celebrity guest who has a strong interest in science. The target audience for the show is the "blue collar intellectual" audience segment who listens to commercial talk radio, has a high school education or less and is in the 25-44 year old range. It is estimated that there will be one million listeners per week by the end of the project. People with disabilities (deaf and visually impaired) will have access to the products through captioning and other features on the website. Project partners include CBS Radio, CBS/AOL, and Discover Magazine. Formative evaluation of these new shows and website will be conducted by Multimedia Research. The Goodman Research Group (GRG) will conduct the summative evluation to assess the extent to which the project accomplishes the goals and specifically will gather and analyze data on the previously untappped and underserved audiences. The evaluation will examine the differences in impact on Science Novices and Science Enthusiasts, asking questions about how the programs increase awareness of scientific issues, and their effects on society and culture, as well as factual knowledge. Methods include multi-level, quasi-experimental, and longitudinal episode assessments. Potential impacts on the field of informal science education include opening up a new commercial radio audience for informal science learning, increasing knowledge about effective approaches to combining humor and science, and demonstrating an effective business model that results in a self-supporting show about science on commercial radio.
This CRPA project will develop a game for mobile devices called the "RapidGuppy". It provides users (students 12-21 years of age) with an interesting and fun way to learn details about biological adaptation and genetic change. The game teaches users about the environmental factors that lead to adaptation. More than 30 years of research on the Trinidadian Guppy that "rapidly" evolves (over 3-5 years) is the basis for the game. The research, databases, and mini-documentaries that support the "RapidGuppy" game are linked to allow users to easily delve deeper into these materials. An extensive social media campaign will be used to market the game and the public facing website. Partners in this endeavor include: University of California-Riverside, Habitat Seven, Magmic Inc., and Edu, Inc. In this project, the mobile device game will be backed by a sophisticated website that contains detailed research results from the field and mini-documentaries showing real fish and the actual research processes as well as researchers and scientists to promote role model development. Interested individuals may also directly access the videos and research results via the website. The target audiences are youth who are prone to play electronic games and the general public. The comprehensive evaluation plan will assess the learning outcomes resulting from the mini-documentaries, in-game content, and website, as well as the playability of the game and website functionality. Impacts resulting from the social media campaign and outreach to underserved audiences will also be measured. Because of the major social media campaign, this project may increase the level of interest in the science of evolution and genetic change, and raise awareness of STEM careers. If the user groups become excited about the game and the inherent messages, it is anticipated that the public will gain a better understanding of the factors responsible for genetic change.
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
Tornado Alley is a large-format 2D/3D film and comprehensive outreach program exploring the science behind severe weather events. The project focuses on cutting-edge developments in the fields of meteorology and earth science, demonstrating weather monitoring technologies. The project spotlights the current research of the VORTEX 2 (V2) project--the most ambitious effort ever to understand the origins, structure and evolution of tornadoes. The principle target audiences are science museum audiences, with additional special attention to under-served, rural mid-western communities, which will be served by digital 3D screenings. The film will be produced by Graphic Films and Giant Screen Films and distributed by Giant Screen Films. The Franklin Institute will create and manage outreach to professional audiences. Informal Learning Solutions will conduct formative evaluation; RMC Research Corporation will conduct summative evaluation of the project. The film, produced by Paul Novros (PI) and directed by Sean Casey, will collaborate closely with the V2 team, led by Dr. Josh Wurman, and consult with the project advisors to assure clarity and accuracy of the science being presented. A distance-learning initiative to serve educators--both formal and informal--will be managed by Karen Elinich (co-PI) of The Franklin Institute. The project's innovative outreach strategies leverage the mobility of the tornado intercept vehicle (TIV) built by Sean Casey, and the Doppler on Wheels and MGAUS (weather balloon vehicles) to bring scientists and weather-monitoring technology into direct contact with audiences. Outreach to underserved audiences, especially rural audiences, will provide opportunities for interactions with V2 PIs and their students, who serve as role models in science careers. In addition, cyber infrastructure will allow groups of educators to interact remotely with V2 researchers and experience visualizations of weather data. The film and ancillary materials will be translated into Spanish. The project serves as a model for the dissemination of the methods and results of a specific major NSF hard-science research endeavor to the general public through ISE products and activities. The goal of the project is for the audience to increase their knowledge and understanding of the scientific process, learn what meteorologists do, what technologies are used in meteorology and weather science and the factors and forces in meteorological events. It is intended that young audience members will also develop and interest in weather science and potential careers in science and engineering. In the first five years of the film\'s release, the audience is anticipated at 7 million plus. In addition, the live outreach events are expected to engage approximately 40,000-60,000 individuals.
The ScienceMakers: African Americans and Scientific Innovation is a three-year project designed to increase awareness of the contributions of African American scientists, raise awareness of STEM careers, and increase understanding of STEM concepts through the creation of education, media, and career resources. The project team is supplemented with an extensive advisory board of STEM education, museum, and community professionals, as well as representatives from partnering science centers. Project partners include the St. Louis Science Center, Liberty Science Center, New York Hall of Science, Pacific Science Center, Franklin Institute, COSI Columbus, Lawrence Hall of Science, SciWorks, Detroit Science Center, and MOSI Chicago. Additional collaborators include middle and high schools with high minority populations. Project deliverables include a fully accessible multi-media archive of video oral histories of 180 African American scientists and web resources and contests utilizing Web 2.0 and 3.0 applications such as social networking tools that foster engagement and build community around the ScienceMakers. Public programs for youth and adults at science museums, after-school programs, and community organizations highlight African American contributors, and encourage interest in science and science careers and the ScienceMakers DVD Toolkit expand the reach of this innovative project. Intended impacts for youth and adults consist of increased awareness of STEM concepts and career options, exposure to African American scientists, awareness of the contributions of minority scientists, and 21st century skills. Intended impacts on professional audiences include increased awareness and understanding of STEM careers and workforce diversity, 21st century skills, and STEM career options. The project evaluation, conducted by Knight-Williams Research Communications, utilizes a mixed-methods approach. The evaluation assesses the impact of the oral history archive, public programs, and other deliverables on public and professional audiences' knowledge, interest, and awareness of the contributions of African American scientists, STEM concepts, and STEM careers. The evaluation also includes an ethnography which examines factors that contribute to success in STEM careers by African-American scientists. The ScienceMakers significantly expands the world\'s largest searchable oral history archive and may have an enduring impact on research and practice in the field of informal science education. The project has the potential to enrich programs and exhibits, while raising awareness of the contributions of African-American scientists among informal science education professionals and the general public.
Oceanus (working title) is a multi-platform media project designed to increase ocean literacy and communicate the latest oceanographic research and exploration. Produced by National Geographic Television, the project will focus on the complex science behind the global ocean systems and the many challenges involved in deep-ocean exploration. Oceanus is designed to reach a broad public audience across both genders and all demographics. The project also includes links to formal education, with special outreach efforts to Spanish-speaking students. The project goals are to increase viewer literacy about 1) the essential principles and fundamental concepts underlying ocean systems and functions, and 2) the impact of the ocean on humanity and our influence on it. The deliverables include a 5-part "landmark" television series featuring Dr. Robert Ballard and a host of international scientists, which will premiere on the National Geographic Channel in 2012. The series will employ a new generation of underwater exploration technology which allows for an unprecedented view of the ocean floor. The project also includes digital and online content, a companion book, coverage in National Geographic magazine and National Geographic Kids magazine, formal and informal materials for teachers and students and an outreach program for underserved youth. Multimedia Research will conduct formative evaluation in two phases, and Knight Williams Inc. will conduct summative evaluation in three separate studies to assess the project\'s learning impacts with respect to the television series, web and outreach activities. Oceanus will showcase technical innovations which advance deep-sea film making. The project aims to engage a broad audience with compelling stories about a critical area of science and related cutting-edge engineering. The television series is expected to reach 25 million viewers in the U.S., and the outreach material millions more. The summative evaluation will add to the body of research on the impact of science educational television on adults, and the impact of outreach to underserved audiences with respect to ocean-related topics.