The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.
The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.
The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
Northern Michigan University's Center for Native American Studies and the Office of Diversity and Inclusion will lead this Design and Development Launch Pilot about culturally inclusive K-16 STEM education for American Indian and Native Alaskan (AIAN) students. This project was created in response to the NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.
The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address the undergraduate STEM achievement and the graduation gap between NAAIs and non-native Americans. This project, the NSF INCLUDES: Indigenous Women Working Within the Sciences (IWWS), has the potential to advance knowledge, instructional pedagogy and practices to improve the performance of NAAI high school students and undergraduate students in STEM.
This project team will work to: (1) pilot activities and coursework to train K-16 STEM educators about American Indian inclusive methods and materials, (2) to provide AIAN high school students with STEM college preparatory experience using inclusive STEM practices, and (3) to provide a cohort of female AIAN high school students additional university experiences and mentors as these students transition to postsecondary education. Activities include a five-day summer educators institute for 40 K-16 STEM educators, an additional weekend workshop for 20 K-16 STEM educators, a summer STEM academy for 96 AIAN high school students, a STEM weekend workshop for female AIAN high school students, and a mentoring program for AIAN high school students.
DATE:
-
TEAM MEMBERS:
April LindalaJessica CruzMartin Reinhardt
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.
The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
Developing and maintaining a diverse, innovative workforce in the fields of science, technology, engineering and math (known as STEM) is critical to American competitiveness in the world, but national surveys report a current and future shortage of highly qualified STEM professionals in the US. One problem creating this shortage is that more than half of all college students who declare a major in STEM fields drop out or change their majors in the first two years of their post-secondary education. This problem is particularly acute for first generation college students. If we could increase the STEM degree completion rate by just 25%, we would make up 75% of the additional workforce needed over the next decade.
Our project aims to increase the STEM persistence of first generation college students and focuses on rural students in West Virginia. Project partners including scientists from National Labs, college faculty, local school system staff, informal educators, State Department of Education officials, and West Virginia college students will collaborate to develop summer and academic year activities that support young undergraduates majoring in STEM. Activities that we will pilot include early opportunities to do science research, academic year courses that develop science, math and communication skills, and the formation of Hometown STEM Ambassadors; undergraduate STEM students that encourage younger students back in their hometown schools. We will study the impact of these activities on students' persistence in STEM majors.
Our Project is called FIRST TWO: Improving STEM Persistence in the First Two Years of College (FIRST TWO).
Technical Details:
During the Development Launch Project, partners will create and pilot components of two courses that will confer college credit to students in two and four year schools. Each course will have as its center piece a research and development internship. By the end of the Project Development Pilot, FIRST TWO course modules will be integrated into courses the State, and be transferable between community colleges and four-year schools.
An innovative component of FIRST TWO is the creation of Hometown STEM ambassadors--students who participate in both courses will be prepared to mentor their peers, and also conduct outreach in their home school districts. They will make presentations to hometown K-12 students, and will discuss STEM college readiness issues with local education leaders. We believe reconnecting post-secondary students with their home communities and providing place-based relevance to their STEM education will have a positive impact on their persistence, as well as the added benefit of encouraging K-12 students to envision themselves as future STEM professionals.
FIRST TWO will:
- integrate early experience in STEM internships, online communities of practice and STEM skills development into a discovery-based "principles of research and development" college seminar for first year students;
- sustain engagement through a second service learning course, called STEM Leadership that will develop communication and mentoring skills and produce peer mentors who will mentor younger students, join in the efforts to change the STEM education experience at their schools, and conduct outreach in their hometown communities during the students? second year and third years.
- secure state-wide adoption and transferability of these courses, or course materials, and ultimately scale the program across the Appalachian region and to other states with large rural student populations.
- collaborate with National Labs to determine the feasibility of a National STEM Persistence Alliance partnering National Lab internship programs with 2 and 4-year schools who serve FGC students.
Finally, there are many studies that inquire into the factors that correlate with post-secondary retention in general, and with STEM attrition specifically but few that focus on rural students. FIRST TWO will fully articulate a rigorous educational research project aimed at advancing understanding of the factors affecting rural students' entry into and persistence in STEM career pathways. This research will study the impact FIRST TWO program components make on rural FGC students' persistence in STEM majors. Instruments will be developed and validated that test the components proposed in FIRST TWO interventions. As we scale the program to a larger Alliance, so will the research study scale, providing a unique opportunity to inform the education community about the rural students' experience.
DATE:
-
TEAM MEMBERS:
Sue HeatherlyKaren ONeilErica Harvey
Utah Valley University (UVU) with partners Weber State University (WSU) and American Indian Services (AIS) are implementing UTAH PREP (PREParation for STEM Careers) to address the need for early preparation in mathematics to strengthen and invigorate the secondary-to-postsecondary-to-career STEM pipeline. As the preliminary groundwork for UTAH PREP, each partner currently hosts a PREP program (UVU PREP, WSU PREP, and AIS PREP) that identifies low-income, under-represented minority, first-generation, and female students entering seventh grade who have interest and aptitude in math and science, and involves them in a seven-week, three-year summer intensive program integrating STEM courses and activities. The course content blends skill-building academics with engaging experiences that promote a clear understanding of how mathematical concepts and procedures are applied in various fields of science and engineering. Courses are enhanced through special projects, field trips, college campus visits, and the annual Sci-Tech EXPO. The purpose of the program is to motivate and prepare participants from diverse backgrounds to complete a rigorous program of mathematics in high school so that they can successfully pursue STEM studies and careers, which are vital to advancing the regional and national welfare.
UTAH PREP is based on the TexPREP program that originated at the University of Texas at San Antonio and which was named as one of the Bright Spots in Hispanic Education by the White House Initiative on Educational Excellence for Hispanics in 2015. TexPREP was adapted by UVU for use in Utah for non-minority serving institutions and in regions with lower minority populations, but with great academic and college participation disparity. With NSF funding for a two-year pilot program, the project partners are building UTAH PREP through a networked improvement community, collective impact approach that, if demonstrably successful, has the ability to scale to a national level. This pilot program's objectives include: 1) creating a UTAH PREP collaboration with commitments to a common set of objectives and common set of plans to achieve them; 2) strengthening existing PREP programs and initiating UTAH PREP at two or three other institutions of higher education in Utah, each building a sustainable local support network; 3) developing a shared measurement system to assess the impact of UTAH PREP programs, adaptations, and mutually reinforcing activities on students, including those from groups that are underrepresented in STEM disciplines; and 4) initiating a backbone organization that will support future scaling of the program's impact.
DATE:
-
TEAM MEMBERS:
Daniel HornsAndrew StoneVioleta Vasilevska
This project seeks to prepare female Hispanic students for leadership in the STEM workforce. The project seeks to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky workforce and educational pipeline resulting in matriculation to and graduation from undergraduate STEM programs. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce. To accomplish these goals, the PIs will: (1) work with partners to identify, recruit, and screen bright, energetic Hispanic females in their freshman year of high school who show promise and interest in STEM disciplines; (2) engage selected students and their families in formal and informal STEM learning both throughout the school year and during summer residential experiences to enable the students to further develop and clarify their STEM calling; (3)prepare the students to matriculate to undergraduate college; (4) provide program participants with full-tuition scholarships to ensure undergraduate education is attainable; and (5) at our institution and partner colleges, provide dedicated advisors and mentors and cohort activities to ensure undergraduate persistence and success.
Technical Summary
The PIs seek to prepare female Hispanic students for leadership in the STEM workforce. To compete in the global economy, maintain national security, and meet serious environmental challenges, more skilled graduates are needed to fill STEM jobs. An untapped source of talent exists in those populations that continue to be underrepresented in STEM fields, including women and people of color. This work will help to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky pipeline resulting in matriculation to and graduation from undergraduate STEM education. The work builds on research that shows that mentored research opportunities and peer support and interaction improves persistence in female students. It also builds on regional models of collective impact whereby a variety of corporate, nonprofit, and foundation organizations successfully join together for large-impact projects. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce.
DATE:
-
TEAM MEMBERS:
April MarchettiCharles EnglishRebecca MichelsenRachele DominguezLaurie Massery
As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE:
-
TEAM MEMBERS:
Jeyamkondan SubbiahEric ThompsonDeepak KeshwaniRichard KoelschDavid Rosenbaum
Youth environmental education (EE) programs often serve as gateway experiences in which diverse audiences engage in informal science learning. While there is evidence that these programs can have positive impacts on participants, little empirical research has been conducted to determine what makes one program more successful than another. To be able to conduct such research, this Exploratory Pathways study will (1) develop and statistically validate ways to measure meaningful outcomes for participants across a variety of programs and (2) test observational methods that will enable research that can determine which elements of program delivery most powerfully influence participant engagement and learning outcomes in different contexts. These efforts will include consultations with diverse subject matter experts from the National Park Service, nature centers, and academia; survey research with participants in afterschool and free-choice EE programs; and observations of EE programs designed to fine tune the measurement of program delivery elements and student engagement. Developing valid and reliable outcomes measures and observational protocols will enable a larger investigation that will specifically address the following research question: What program characteristics lead to the best learning outcomes for program participants in different contexts? This research will result in empirically tested guidelines that will enable educators to design and deliver more effective programs for a wide range of audiences in a wide range of contexts. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This effort will refine methods necessary to undertake an unprecedented study (and future AISL Research in Service to Practice proposal) to examine the linkages between pedagogical approaches, participant engagement, and learning outcomes in informal STEM-focused youth EE programs. The larger study will involve systematically observing a large number of programs to assess the use of different approaches and to link those approaches to engagement and learning outcomes through both observation and survey research. In this current study the team will develop and refine crosscutting outcome measures to ensure validity, reliability, and sensitivity by drawing upon the literature and consultation with key stakeholders to develop suites of indicators for subsequent psychometric testing and revision. They will also refine observational techniques for assessing pedagogical approaches through extensive testing of inter-rater reliability. Finally, techniques for measuring participant engagement, incorporating both observational techniques and retrospective participant surveys will be refined. The work will be conducted by researchers at Clemson University and Virginia Tech, in partnership with the U.S. National Park Service, the North American Association for Environmental Education, and the American Association of Nature Center Administrators. This work represents the first step in a longer research process to determine the "best practices" most responsible for achieving outcomes in a wide range of contexts.
The Wayne State University Math Corps is a mathematics enrichment and mentoring program that operates during summers and on Saturdays. The curriculum and the teach pedagogies in this informal learning program have documented success of supporting youths' mathematics learning as well as raising achievement levels in school. Through rigorous research and evaluation, this project seeks to analyze and understand the nature, extent, and reasons for Math Corps' success with youth learning in Detroit as well as the processes of program replication in three sites: Cleveland, OH; Utica, NY; and Philadelphia, PA. As such, this project will deepen understandings of program replication and of addressing the needs of youth in economically-challenged communities in order to promote mathematics learning.
The project's research studies will assess the multiple factors that make Math Corps successful with youth in Detroit and document the implementation of the program to the three replication sites. Research methods include discourse analyses, surveys, interviews, and pre/post-tests. The project will also conduct a retrospective evaluation of Math Corps based on quantitative datasets regarding both near-term and long-term youth outcomes.
This projects is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Steve KahnStephen ChrisomalisTodd KubicaCarol Philips-BeyFrancisca Richter
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This Research in Service to Practice project will examine how a wide range of pre-college out-of-school-time activities facilitate or hinder females' participation in STEM fields in terms of interest, identity, and career choices. The study will address the ongoing problem that, despite females' persistence to degree once declaring a major in college, initially fewer females than males choose a STEM career path. To uncover what these factors might be, this study will look at the extent to which college freshmen's pre-college involvement in informal activities (e.g., science clubs, internships, shadowing of STEM professionals, museum-going, engineering competitions, citizen science pursuits, summer camps, and hobbies) is associated with their career aspirations and avocational STEM interests and pursuits. While deep-seated factors, originating in culture and gender socialization, sometimes lower females' interest in STEM throughout schooling, this study will examine the degree to which out-of-school-time involvement ameliorates the subtle messages females encounter about women and science that can interfere with their aspiration to a STEM careers.
The Social Cognitive Career Theory will serve as the theoretical framework to connect the development of interest in STEM with students' later career choices. An epidemiological approach will be used to test a wide range of hypotheses garnered from a review of relevant literature, face-to-face or telephone interviews with stakeholders, and retrospective online surveys of students. These hypotheses, as well as questions about the students' demographic background and in-school experiences, will be incorporated into the main empirical instrument, which will be a comprehensive paper-and-pencil survey to be administered in classes, such as English Composition, that are compulsory for both students with STEM interests and those without by 6500 students entering 40 large and small institutions of higher learning. Data analysis will proceed from descriptive statistics, such as contingency tables and correlation matrices, to multiple regression and hierarchical modeling that will link out-of-school-time experiences to STEM interest, identity, and career aspirations. Factor analysis will be used to combine individual out-of-school activities into indices. Propensity score weighting will be used to estimate causal effects in cases where out-of-school-time activities may be confounded with other factors. The expected products will be scholarly publications and presentations. Results will be disseminated to out-of-school-time providers and stakeholders, educators, and educational researchers through appropriate-level journals and national meetings and conferences. In addition, the Public Affairs and Information Office of the Harvard-Smithsonian Center for Astrophysics will assist with communicating results through mainstream media. Press releases will be available through academic outlets and Op-Ed pieces for newspapers. The expected outcome will be research-based evidence about which types of out-of-school STEM experiences may be effective in increasing young females' STEM interests. This information will be crucial to educators, service providers, as well as policy makers who work toward broadening the participation of females in STEM.
DATE:
-
TEAM MEMBERS:
Roy GouldPhilip SadlerGerhard Sonnert
Situated within the Advancing Informal STEM Learning program, this Research in Service to Practice award seeks to design, implement, and evaluate an intervention aimed at fostering a culture of productive failure practices. The project responds to a broad concern in educational research and practice: Experiences of failure are frequently so negative that students shut down, lose agency, and develop low self-efficacy and learned helplessness. Surrendering too quickly to obstacles is particularly unfortunate, given evidence that initially "getting it wrong" ultimately breeds deep and sustained learning. In order to learn how students can make the most of productive failure, the proposed project will study how a community of practice that includes middle school youth and their mentors attempts to change its handling of learning obstacles. Building on prior research documenting storytelling practices in an afterschool program, the team now aims to embolden young students' productive practices of failure storytelling in computer science, a field in which experts practice candid, pervasive, and collaborative discourse around errors ("bugs"). Pulling together the domains of narrative analysis, meta-cognitive reflection, and control theories of motivation, within the context of authentic computer-science debugging activity, this study develops a theoretical framework that views productive responses to failure as a discipline-specific process of reflecting as a community on how to locate obstacles, how to construct causal theories about why those obstacles emerged, and how to plan productive responses. A design-based research approach will investigate three questions: (1) What is the impact of the interventions on students and instructors' actions and discourse when they are debugging errors in computer code? (2) What is the impact of the interventions on students and instructors' reflections back on their prior debugging experiences and on failure in general? and (3) What is the impact of the instructor-development efforts on the instructors' capacity to foster students' productive attitudes toward failure? The study focus will be 15 summer and weekend coding workshops with 5th-8th grade students from populations typically under-represented in STEM. The interventions are (a) setting new norms and practices for debugging, (b) instructor education, and (c) coding software that provides students with feedback on their productive struggle. Data sources include video and audio recordings of the learning environment, artifacts produced during the activities, and semi-structured interviews. Measures will capture variations in debugging activities, reflections on debugging, students' ideas about grit and growth mindset, and instructors' struggles and successes with the new curriculum. The empirical results will consist of mixed-methods, micro-longitudinal accounts of how a community of practice works to reform its orientation to failure. The products of this work include empirical knowledge, theory, and curriculum about how learning communities help students develop robust and efficient responses to failure. These will be disseminated through journals, open-source software, and workshops/conferences for researchers and practitioners working with youth afterschool programs. The products may be useful for exploring practices in the classroom. This project is being conducted by the 9 Dots Community Learning Center, UCLA and UC Berkeley.
DATE:
-
TEAM MEMBERS:
Melissa ChenDor AbrahamsonNoel EnyedyFrancis SteenDavid DeLiema