This annual report presents an overview of Saint Louis Science Center audience data gathered through a variety of evaluation studies conducted during 2016. This report includes information on the Science Center's general public audience demographics and visitation patterns, gives an overview of visitors' comments about their Science Center experience, summarizes major trends observed in the Science Center's tool for tracking educational programs, and presents highlights from evaluations of the new GROW exhibition and First Friday program.
Integrating Science Into Afterschool: A Three-Dimensional Approach To Engaging Underserved Populations In Science, or STEM 3D, was a five year project led by The Franklin Institute. The project was created with three major goals: to (1) increase youth engagement in hands-on, inquiry based, science projects; (2) cultivate intergenerational/parental support for science learning; and (3) evaluate the effectiveness of this 3-D (afterschool, home, and community) approach in engaging children, families, afterschool facilitators, and community-based organizations in science learning and the promotion
As part of a grant from the National Science Foundation, the National Federation of the Blind (NFB) developed, implemented, and evaluated the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through this grant, the NCBYS extended opportunities for informal science learning for the direct benefit of blind students by conducting six NFB STEM2U regional programs included programs for blind youth, their parents/caregivers, blind teen mentors (apprentices), and museum educators.
The landscape for out-of-school STEM learning in Hong Kong is evolving. In 2017, to capture this change, the Croucher Foundation conducted a mapping exercise. This is the second annual mapping exercise conducted by the Croucher Foundation.
The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with almost 2,000 discrete activities covering a very wide range of science disciplines. This second report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out
The Croucher Foundation recently embarked on a research study to explore informal science learning in Hong Kong. This is the first study to focus on the out-of-school ecosystem for science learning in Hong Kong. This exploratory and investigative study identified over a thousand out-of-school STEM activities that happened between June 2015 and May 2016, including courses, workshops and exhibitions available to Hong Kong school students over this twelve-month period. The study excluded tutorials and exam-orientated courses and focused instead on activities designed to encourage an interest in
From 2014-2016, Pacific Science Center continued and expanded the Science Technology Engineering and Math Out-of-School-Time (STEM-OST) program with the purpose of delivering programs to stem the summer learning loss. Specifically, the project expanded to new venues in the Puget Sound (Washington) region; modified the lessons and activities so they also served students in grades K-2; aligned the curriculum with the Next Generation Science Standards (recently adopted by the Washington State Legislature) and increased the number of Family Science Days and Family Science Workshops offered to
The Science Museum of Minnesota (SMM) leverages a professional educator team (“instructors”) comprised of about two dozen individuals who facilitate both formal and informal educational programming in the museum, in K–12 classrooms, and at community-based sites. The experienced instructors of SMM’s Lifelong Learning Group bring innovative programs to both students and their teachers. Recognizing that long-term experiences can have a profound impact on students and teachers, SMM works to develop multiyear relationships based on collaboration. This article focuses primarily on SMM’s well
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.
The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.
The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This Research in Service to Practice project will examine how a wide range of pre-college out-of-school-time activities facilitate or hinder females' participation in STEM fields in terms of interest, identity, and career choices. The study will address the ongoing problem that, despite females' persistence to degree once declaring a major in college, initially fewer females than males choose a STEM career path. To uncover what these factors might be, this study will look at the extent to which college freshmen's pre-college involvement in informal activities (e.g., science clubs, internships, shadowing of STEM professionals, museum-going, engineering competitions, citizen science pursuits, summer camps, and hobbies) is associated with their career aspirations and avocational STEM interests and pursuits. While deep-seated factors, originating in culture and gender socialization, sometimes lower females' interest in STEM throughout schooling, this study will examine the degree to which out-of-school-time involvement ameliorates the subtle messages females encounter about women and science that can interfere with their aspiration to a STEM careers.
The Social Cognitive Career Theory will serve as the theoretical framework to connect the development of interest in STEM with students' later career choices. An epidemiological approach will be used to test a wide range of hypotheses garnered from a review of relevant literature, face-to-face or telephone interviews with stakeholders, and retrospective online surveys of students. These hypotheses, as well as questions about the students' demographic background and in-school experiences, will be incorporated into the main empirical instrument, which will be a comprehensive paper-and-pencil survey to be administered in classes, such as English Composition, that are compulsory for both students with STEM interests and those without by 6500 students entering 40 large and small institutions of higher learning. Data analysis will proceed from descriptive statistics, such as contingency tables and correlation matrices, to multiple regression and hierarchical modeling that will link out-of-school-time experiences to STEM interest, identity, and career aspirations. Factor analysis will be used to combine individual out-of-school activities into indices. Propensity score weighting will be used to estimate causal effects in cases where out-of-school-time activities may be confounded with other factors. The expected products will be scholarly publications and presentations. Results will be disseminated to out-of-school-time providers and stakeholders, educators, and educational researchers through appropriate-level journals and national meetings and conferences. In addition, the Public Affairs and Information Office of the Harvard-Smithsonian Center for Astrophysics will assist with communicating results through mainstream media. Press releases will be available through academic outlets and Op-Ed pieces for newspapers. The expected outcome will be research-based evidence about which types of out-of-school STEM experiences may be effective in increasing young females' STEM interests. This information will be crucial to educators, service providers, as well as policy makers who work toward broadening the participation of females in STEM.
DATE:
-
TEAM MEMBERS:
Roy GouldPhilip SadlerGerhard Sonnert
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and research an integrated children's media and early childhood educator professional development strategy to prepare preschoolers with social-emotional skills that provide a foundation for later math learning success. The social-emotional skills include persistence, risk-taking, regulating anxieties, and collaborating to solve problems. Media components include Peg+Cat television episodes, videos, games and apps distributed through PBS broadcast and online. The integrated professional development model is designed to impact these educators' understanding of math and develop their skills for fostering in children a positive math mindset. Additional resources include a new Peg+Cat summer day camp at the Carnegie Science Center in Pittsburgh. The project partners include a media company, The Fred Rogers Company; researchers at the University of Pittsburgh and St. Vincent College; and the evaluator, Rockman et al. This project is unique in its focus on integrating social-emotional skills with early math learning and educator skill development. It will fill an important niche in the research literature and has the potential to impact media practice which is undergoing significant change as new digital tools and technologies become available for learning. Both standardized and researcher-developed measures will be used to assess learning outcomes, including early childhood educators' attitudes and quality of instruction, as well as children's interest and engagement in math. The research design includes iterative data collection to inform the development and refinement of the professional learning for teachers. The mixed methods approach will include classroom observations, interviews and focus groups with educators, and parent questionnaires. Key questions include: does exposure to Peg+Cat positively relate to children's use of social-emotional skills during math learning activities? Does educators' exposure to the professional development training improve their attitudes and abilities to infuse math instruction with social-emotional skills? Does having an educator who received Peg+Cat training impact children's engagement and interest in math?
The integration of research with education and outreach is an essential aspect of our Center's mission. In order to assure the most effective use of our expertise and resources, we have developed a multi-faceted approach with activities that focus on coherent themes that address our three primary audiences: research community, our neighborhood, and the general public. These activities include research internships, enrichment programs for students & teachers, and informal science opportunities.