This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.
The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE:
-
TEAM MEMBERS:
Geza GyukPamela GayChristopher LintottMichael RaddickLucy FortsonJohn Wallin
Our goal is to attempt the identification of Sevengill sharks (Notorynchus cepedianus) that may be returning to San Diego from year-to-year, using the pattern recognition algorithm provided in ‘Wildbook,’ a web-based application for wildlife data management, designed by Jason Holmberg. 'Wildbook' which has been successfully used to ID Whale Sharks (Rhincodon typus ) by their spotting patterns.
Sevengill sharks (Notorynchus cepedianus), are currently listed as Data deficient (DD) on the IUCN Red List: "This assessment is based on the information published in the 2005 shark status survey (Fowler et al. 2005).
The Adler Planetarium, Johns Hopkins University, and Southern Illinois University-Edwardsville are investigating the potential of online citizen science projects to broaden the pool of volunteers who participate in analysis and investigation of digital data and to deepen volunteers' engagement in scientific inquiry. The Investigating Audience Engagement with Citizen Science project is administering surveys and conducting case studies to identify factors that lead volunteers to engage in the astronomy-focused Galaxy Zoo project and its Zooniverse extensions. The project is (1) identifying volunteers' motivations for joining and staying involved, (2) determining factors that influence volunteers' movement from lower to higher levels of involvement, and (3) designing features that influence volunteer involvement. The project's research findings will help informal science educators and scientists refine existing citizen science programs and develop new ones that maximize volunteer engagement, improve the user experience, and build a more scientifically literate public.
DATE:
-
TEAM MEMBERS:
Karen CarneyMichael RaddickPamela Gay
The Community Collaborative Rain, Hail and Snow (CoCoRaHS) network is an existing backyard citizen science project that is enhancing the research efforts of scientists and promoting climate literacy among the public by engaging volunteers in precipitation-monitoring activities. More than 14,000 volunteer citizen scientists of all ages in 50 states currently measure precipitation from their homes, schools, public areas and businesses using rain gauges, snow rulers and hail pads, and then post their data to the CoCoRaHS website. Building on this work, the current Broad Implementation project is enhancing CoCoRaHS' network and making it possible for more people from across the country to monitor precipitation. The enhancements include (1) installing a new generation of data entry, storage, management, analysis and visualization tools, (2) collecting evapo-transpiration data to improve scientists' water cycle models, (3) revising and creating new citizen science training materials (print and multimedia), (4) expanding national collaboration and outreach via integration of social networking and mobile device technologies, and (5) developing a standards-aligned K-12 education outreach component that has a national reach. Citizen scientists are being equipped and trained to be neighborhood climate data analysts and are provided with new tools for data analysis and inquiry learning. The enhancements will allow new collaborations between museums and science centers, targeted outreach to underserved audiences, and recruitment of thousands of new volunteers for the CoCoRaHS network. Through a partnership with the National Association of Conservation Districts, the project will conduct educational outreach to all 3,140 counties in the country. Anticipated results include increased numbers of people, particularly younger people, participating in precipitation-monitoring activities, and increased participant knowledge, skills, interest, and involvement in climate science and scientific inquiry. Building the project's capacity to involve 20,000-50,000 more volunteers across nation will increase the density of precipitation-monitoring stations, providing scientists with higher quality weather data.
This project will expand the functions and applications of FieldScope, a web-based science information portal currently supported by the National Geographic Society (NGS). The goal is to create a single, powerful infrastructure for Public Participation in Science Research (PPSR) projects that any organization can use to create their own project and support their own community of participants. FieldScope currently provides various tools and applications for use by its existing user base that includes the GLOBE project and the Chesapeake Bay monitoring system. The application enables users to contribute volunteered geographic data collection efforts and sharing information among both professional and amateur users. The project would develop and test an enhanced version of the existing FieldScope application. The project supports major programming development for a fully-functional web-based application that would significantly enhance the usability of the current application. Along with programming new features and capabilities, the project involves extensive evaluation of the new capabilities and involves three citizen-based organizations as testbeds.
The project will increase the capability of the existing system to handle large numbers of users and user groups and also increase the number and variety of tools available to any user; provide customization through the adaption of common APIs; and provide for expansion of computer space through use of virtual servers in a cloud computing environment thereby limiting the need for installed hardware. This approach would maximize storage and computing power by being able to call on resources when necessary and scaling back when demand decreases. The platform would include advanced visualization capabilities as part of a suite of analytic tools available to the user. Social networking applications would also be incorporated as a way of enabling communication among users of a particular site. The operation of the portal would be supported by the NGS and made available free of charge to any group of users applying for space. Nominal fees will be applied to large organizations requiring large computing space or additional features. User groups can request NGS supply custom features for the cost of development and deployment.
The evaluation of this project is extensive and focused on formative evaluation as a means to identify user preferences, from look and feel of the site to types of tools desired and types of uses expected. The formative evaluation would be conducted ahead of any commitment to programming and formatting of the features of the site. The project responds to a need expressed throughout the citizen science community for web-based applications that enable individuals to engage in a topic of interest, interact in various ways on such a site including the submission of data and information, analyze the information in concert with others and with working scientists in the field, and utilize state-of-the-art tools such as visualization as a way of making sense of the data being collected. There have been numerous proposals to create similar types of sites from various groups, each based on its own perceived needs and grounded in its own particular discipline or topic. This activity could serve this community more broadly and save similar groups the trouble and expense of creating sites from scratch.
With the Museum's increasing interest in urban biodiversity, we have started looking at all types of wildlife in our highly modified industrial, suburban, and urban habitats. One thing that quickly struck us was that in our own backyard, Exposition Park, nobody had documented any lizards since 1988. This seemed strange, as lizards are common in other parts of Los Angeles, and it led to the question, "Why are there no lizards here?" We hope to answer this question with the LLOLA (pronouced "lola") project. LLOLA aims to do two things: 1) Confirm the presence or absence of lizards in Exposition park. (After all, nobody has looked extensively for them! 2) Find out where lizards DO occur in the Los Angeles Basin, and start to hypothesize why they can survive there.
The University of Minnesota is partnering with several nature centers in the Midwest to transform citizen "technicians" into citizen "scientists." The Driven to Discover project will use existing citizen science programs with strong educational components to engage 12-14 year old youth and their adult mentors in authentic research. The goal of the project is to develop a training model for adults who work with youth in a variety of informal education settings to involve them in authentic scientific inquiry via citizen science rather than just data collection activities. In the proof-of-concept phase, teams consisting of 4-H youth, adult leaders, and several scientists are conducting participatory action research to understand what factors lead youth to full engagement in ecological research. In phase two, project personnel are training 4-H educators, naturalists, and teachers how to engage youth and their adult leaders in other 4-H programs and other informal education programs to conduct ecological research with scientists in advisory roles. Phase one involves approximately 10 adults and 70 youth, whereas phase two involves approximately 40 adults and 300 youth. A front-end study defined the project's target audiences and partners. Formative evaluation study will monitor interactions among members of the research teams and summative evaluation will measure impacts on participants' knowledge, skills development, attitudes, and behavior. Project deliverables include youth-generated ecological research findings, web-based program implementation materials, an annual conference, and a model for engaging youth groups in informal settings in authentic scientific inquiry. The model is expected to impact more than six million youth nationwide.
DATE:
-
TEAM MEMBERS:
Karen OberhauserNathan MeyerAndrea Lorek StraussPamela NippoltKatie ClarkRobert Blair
This development project will create, test, validate, and disseminate a suite of evaluation tools for use by professionals who are developing Public Participation in Scientific Research projects. The necessary evaluation tools for what participants learn or believe after participating in citizen science projects (called Public Participation in Scientific Research or PPSR) are generally unavailable to project managers where conference participants. The project will collect examples of cognitive and affective test instruments and try them out in citizen science projects underway. This project grew from discussions at a conference on Developing a Citizen Science Toolkit at Cornell in 2007 where participants noted that evaluation is the most challenging and least understood step in the process of project development. Thus to provide projects with the tools of evaluation that are relevant to the field itself and to the development of the projects on citizen science, the investigators intend to conduct a study to demonstrate how an evaluation framework can be used to assess the impact of projects by conducting evaluations and presenting them as case studies. The investigators will provide evaluation tools for project developers and will facilitate community discussion about the use of these materials. The project also will provide an evaluation of the procedures used to create the tool kit for investigators. The evaluators are expert professionals in the field of attitude measurement, cognitive measurement, informal science program creation, and citizen science management. The investigators will provide webinars for investigators planning to use the tool kit in their projects. This project is intended to strengthen the field of informal science education researchers and administrators by providing a source for acceptable measurement methods of the impact on the public of participating in a scientific research project.
Engaging Latinos in Informal Science Education is designed to address the low participation rate of Latino youth and adults in activities conducted by parks, refuges, nature centers, and other informal science education venues. The project objectives are to expand upon existing studies that attempt to identify barriers to Latino participation, work with communities to identify the tools needed to overcome barriers, and utilize the tools in established programs. Surveys and interviews conducted with Latino communities are designed to identify key measures that will improve participation in informal learning programs which are then implemented in the International Migratory Bird Day (IMBD) program. Park Flight international interns from Mexico, Central America, the Caribbean, and the US will work in Latino communities near seven sites that host annual IMBD. Deliverables include a comprehensive technical report resulting from the analysis of surveys and a toolkit to promote the involvement of Latino communities in informal science education. The multi-stage evaluation includes the annual evaluation of participation levels at seven treatment and five control sites, pilot testing of the key strategies for family involvement identified in the survey results, and formative evaluation of the project toolkit. Project partners are the National Park (NPS) Service, NPS Park Flight Migratory Bird Program, Colorado State University, Rocky Mountain Bird Observatory, PRBO Conservation Services, and six national parks. Strategic impact will be realized through the development and national dissemination of the project toolkit to almost 1000 partner offices across the US.
The Cornell Lab of Ornithology is creating a new type of interactive, question-driven, online bird-identification tool called "Merlin," along with associated games, social networking tools, and other media. Unlike existing bird-identification guides, which are based on traditional taxonomic keys written by scientists, Merlin uses machine learning algorithms and crowd-sourced data (information provided by thousands of people) to identify birds and improve Merlin's performance with each interaction. The tool will help millions of people identify birds and participate in a collective effort to help others. The Crowd ID project will make it easier for people to discover the names of birds, learn observation and identification skills, find more information, and appreciate Earth's biodiversity. The summative evaluation plan is measuring increases in participants' knowledge, engagement, and skills, as well as changes in behavior. Impacts on participants will be compared to a control group of users not using Merlin. Merlin tools will be integrated into the Cornell Lab's citizen science and education projects, which reach more than 200,000 participants, schoolchildren, and educators across the nation. Merlin will be broadly adapted for use on other websites, social networking platforms, exhibits, mobile devices, curricula, and electronic field guides. Once developed, Merlin can be modified to identify plants, rocks, and other animals. Merlin will promote growth of citizen science projects which depend on the ability of participants to identify a wide range of organisms.
The Maryland Science Center, in partnership with SK Films, Inc. received NSF funding to produce a large format, 2D/3D film and multi-component educational materials and activities on the annual migration of monarch butterflies, their life cycle, the web of life at select sites where they land, and the citizen science efforts that led to the monarch migration discovery. Project goals are to 1) raise audience understanding of the nature of scientific investigation and the open-ended nature of the scientific process, 2) enhance and extend citizen science programs to new audiences, and 3) create better awareness of monarch biology, insect ecology and the importance of habitat. Innovation/Strategic Impact: The film has been released in both 3D and 2D 15/70 format. RMC Research Corporation has conducted evaluation of the project, both formatively and summatively, including a study of the comparable strengths of the 2D and 3D versions of the film. RMC has conducting formative evaluation and is currently conducting summative evaluation to assess the success of project materials in communicating science and achieving the project's learning goals. Collaboration: This project employs a collaborative model of partnerships between the project team and the National Science Teachers Association (NSTA), the University of Minnesota's Monarchs in the Classroom and Monarch Watch. Project advisors represent world-renown monarch butterfly research scientists and educators, including Dr. Karen Oberhauser, named a "Champion of Change" by President Obama in June 2013, and Dr. Chip Taylor, founder and director of Monarch Watch at the University of Kansas.
The Cornell Lab of Ornithology, the Institute for Learning Innovation, and several environmental organizations are merging existing bird-focused citizen science programs with gardening and online social networking activities to provide older adult learners (age 35 and up) with opportunities to investigate the environmental impacts of implementing landscaping and carbon-reducing practices in their backyards, community gardens, and parks. The YardMap Network project is developing learning resources that will help gardeners, birders, and novices learn bird-habitat improving and carbon-reducing living practices by joining a nationwide ecological social network composed of more than 100,000 people. The goal of the project is to create online learning communities that move people from basic and intermediate levels ecological understanding to advanced levels of understanding by providing experiences whereby YardMappers learn about, design, evaluate, share, and invent conservation practices in their backyards and other green spaces. While developing the network, the project will gather data to test the hypothesis that coupling citizen science activities with social networking technologies to create online learning communities improves participants\' understanding of project-relevant science, technology, engineering, and mathematics. The project will track learning outcomes using standard evaluation techniques and by following individuals\' routes of entry, network interactions, mapped garden practices, carbon-neutral behaviors, and their bird monitoring activities. YardMappers will divide naturally into treatment groups, creating a quasi-experimental design to test the importance of social networking for basic, intermediate, and advanced learning outcomes.