As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this project is to make 21st century quantum science comprehensible and engaging to non-expert informal adult learners. This project has strong potential to add new knowledge about the public's perception and understanding of quantum physics. This scientific content is often difficult for informal audiences to grasp, and there are relatively few accessible learning resources for a non- professional audience. The development of this online, interactive resource with short animations, graphics, and simulations has strong potential to fill this gap. It will develop a visually driven online resource to engage non-expert audiences in understanding the basics of quantum physics. The web design will be modular, incorporating many multimedia elements and the structure will be flexible allowing for future expansion. All content would be freely available for educational use. There is potential for extensive reach and use of the resources by informal adult learners online as well as learners in museums, science centers, and schools. Project partners are the Joint Quantum Institute at the University of Maryland and the National Institute of Standards and Technology, College Park. An independent evaluation of the project will add new knowledge about informal learners' perceptions and/or knowledge about quantum science and technology. An initial needs assessment via focus groups with the general public will be designed to find out more about what they already know about quantum physics topics and terminology, as well as what they want to know and what formats they prefer (games, simulations, podcasts, etc.). In person user testing will be used with early versions of the project online resource using a structured think-aloud protocol. Later in year 1 and 2, online focus groups with the general public will be conducted to learn what they find engaging and what they learned from the content. Iterative feedback from participants during the formative stage will guide the development of the content and format of the online resources. The Summative Evaluation will gather data using a retrospective post-survey embedded with a pop-up link on the Atlas followed by interviews with a subset of online users. Google Analytics will be used to determine the breadth and depth of their online navigation, what resources they download, and what websites they visit afterward. A post-only survey of undergraduate and graduate students who participated in resource development will focus on changes in students' confidence around their science communication skills and level of quantum physics understanding.
Often called "self-plagiarism," text recycling occurs frequently in scientific writing. Over the past decade, increasing numbers of scientific journals have begun using plagiarism detection software to screen submitted manuscripts. As a result, large numbers of cases of text recycling are being identified, yet there is no consensus on what constitutes ethically acceptable practice. Text recycling is thus an increasingly important and controversial ethical issue in scientific communication. However, little actual research has been conducted on text recycling and it is rarely addressed in the ethical training of researchers or in scientific writing textbooks or websites. To promote the ethical and appropriate use of text recycling, this project will be conducted in two phases: In Phase 1, the researchers will investigate the ethical, practical, and legal aspects of text recycling as relevant for professional researchers, students, and publishers. In Phase 2, the investigators will produce educational materials and develop model language for text recycling guidelines and author-publisher contracts that can be adapted by educational institutions, research organizations, and publishers.
This project is a multi-institutional, multidisciplinary investigation of text recycling, the reuse of material from one?s previous work in a new manuscript. In Phase 1, the researchers will investigate questions such as these: What do expert researchers, students, and others involved in scientific communication believe to be appropriate practice, and why? Where is there a clear consensus among experts and where is there substantive disagreement? How often do professional scientists actually recycle material, and in what ways? Under what circumstances does text recycling violate publisher contracts or copyright laws? One facet of this research will involve interviewing and surveying experienced STEM faculty, students, journal editors, and others regarding the ethics of text recycling. A second facet will analyze a corpus of published scientific papers to investigate how researchers recycle text in practice and how this has changed over time. The third facet involves analyzing publisher contracts to better understand the rights of publishers and authors regarding text recycling and to assess their legal validity. In Phase 2, the investigators will use findings from Phase 1 to develop, test, and disseminate two kinds of materials: The first are web and print based instructional materials for STEM students (and others new to STEM research) explaining the ethical, legal, and practical issues involved with text recycling, as well as accompanying documents for faculty, administrators, and librarians. The second are model policies and guidelines for text recycling that address appropriate practice in both academic and professional settings. The investigators will obtain feedback on drafts of these materials from potential users and revise them accordingly, after which they will be disseminated.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal Science Learning program funds innovative research, approaches and resources for use in a variety of settings. This Exploratory Pathways project brings together scientists and science curriculum experts with field station leaders to study informal science learning at biological field stations. The objective is to understand and evaluate the unique qualities of field stations as centers of informal and enduring science learning for the non-science community. There are over 400 field stations and represent a science communication mechanism that if available to most US citizens. This project is a collaboration between Texas A&M University and Colorado State University.
Field stations typically engage in informal science learning. While there are great examples of informal learning through outreach activities at field stations, little is known about what is happening in the aggregate at these establishments. This project documents the outreach work of field stations and explores the connections between how the outreach activities engage learners, incorporate science topics, and address science learning. By creating an Outreach Ontology, a multidimensional framework around the outreach activities, this work provides a valuable resource and reference to informal science researchers who seek to understand what informal learning projects are undertaken at field stations, and how these activities fit into the broader context of informal science learning. This project will help field stations collaborate on improving informal STEM learning activities by bringing them together to discuss their efforts and by developing a publicly available, searchable database detailing their activities. A particular benefit to advancing informal STEM learning by investigating field stations is the broad range of people and communities that are involved with and affected by field station outreach activities.
As higher education institutions (HEIs) work to enhance Broader Impacts (BI) efforts, collaborations with informal science education institutions (ISEs) (e.g. science centers, aquaria, zoos) can help them strengthen their impact and reach broader audiences. This project builds on the successful Portal to the Public (PoP) framework, bringing together the expertise and resources of HEIs and ISEs around the shared mission of engaging public audiences in current STEM research. The project is designed to address several critical needs: (1) Public outreach BI activities are relatively uncommon compared to BI that is focused within the infrastructure of academia; (2) Because collaborations with ISEs are frequently tied to individual Principal Investigators (PIs), there is limited opportunity to build a body of knowledge around the practice of partnering for BI work; and (3) Collaborations are often transient, making it more difficult for universities to view BI on an institutional level in ways that leverage particular institutional assets or strategies and even link investigators from multiple projects. The specific areas of study are: a. Develop and test a structure for education/outreach BI experience design that addresses a public audience need and meets NSF's BI criterion: The project will create disseminatable tools around the activity design process (including evaluation of learning impacts). By convening cross-disciplinary teams, the project will ensure that experiences will reflect a wide range of expertise and will help meet the needs of multiple stakeholders. These established structures will lower the barrier to entry for PIs who want to do public outreach BI. b. Design, test, and study structures for long-term, mutually beneficial HEI-ISE partnerships: The project will build on the proven PoP model to create flexible, disseminatable tools around the development of institutional partnerships at three collaborating HEI-ISE site pairings that consider each institution's resources, constraints and strategic goals, including a cross-institutional and cross-disciplinary Broader Impacts Design (BID) Team structure. Sustained partnerships will support ongoing public engagement with current STEM research. c. Anchor the partnership at the HEI with a representative from an office of research support: Research support professionals will be a core part of the BID Team and will help support institutional strategies for aligning BI activities with broader goals around community engagement. d. Study the culture of HEI-ISE partnerships, building knowledge about how these institutions can form effective, sustained and mutually beneficial collaborations. Project partners include Pacific Science Center with the University of Washington, Bothell, WA; University of Wisconsin-Madison with the Wisconsin Institute for Discovery; and the Sciencenter with Cornell University, Ithaca, NY. In addition, the Center for Research in Lifelong Learning, Oregon State University will oversee the research aspects of the project. The project's primary benefit is the development of more effective mechanisms for HEIs and ISEs to collaborate, that will better enable them to engage their communities in experiences and conversations about current STEM research and innovation. This project is being funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The primary goal of MAST-3 is to increase the diversity of students, particularly those from underrepresented groups, electing careers in NOAA related marine sciences. This is done through a multidisciplinary program that engages students in NOAA-related marine research, and explores marine policy, the heritage of African Americans and Native Americans in the coastal environment, and seamanship. MAST students use the Chesapeake Bay to understand efforts to protect, restore and manage the use of coastal and ocean resources through an ecosystem approach to management. To do this, Hampton University has formed partnerships with various NOAA labs/sites, several university laboratories, the USEPA, various museums, the Chesapeake Bay Foundation, and the menhaden fishing industry.
The cyberlearning community in the United States brings computer scientists and learning scientists together to design and study innovative learning technologies. The Cyberlearning Community Report: The State of Cyberlearning and the Future of Learning With Technology highlights examples of the exciting work our community is engaged in as we integrate the latest innovations in learning science and computer science into new research designs and methods. This work is also driving the need for new learning sciences in areas such as embodied cognition, identity, and affect, and requires advances
This longitudinal research study will contribute to a broader understanding of the pathways of STEM-interested high school students from underrepresented groups who plan to pursue or complete science studies in their post-high school endeavors. The project will investigate the ways that formative authentic science experiences may support youth's persistence in STEM. The study focuses on approximately 900 urban youth who are high interest, high potential STEM students who participate in, or are alumni of, the Science Research Mentoring Program. This program provides intensive mentoring for high school youth from groups underrepresented in STEM careers. It takes place at 17 sites around New York City, including American Museum of Natural History, which is the original program site. Identifying key supports and obstacles in the pathways of high-interest, under-represented youth towards STEM careers can help practitioners design more inclusive and equitable STEM learning experiences and supports. In this way, the project will capitalize on student interest so that students with potential continue to persist.
In order to understand better the factors that influence these students, this research combines longitudinal social network and survey data with interviews and case studies, as well as an analysis of matched student data from New York City Public Schools' records. The research questions in the study are a) how do youths' social networks develop through their participation in scientists' communities of practice? b) what is the relationship between features of the communities of practice and youths' social networks, measures of academic achievement, and youths' pursuit of a STEM major? and c) what are the variations in youth pathways in relationship to learner characteristics, composition of social networks, and features of the community of practice? The research design allows for a rich, layered perspective of student pathways. In particular, by employing social network analysis, this study will reveal relational features of persistence that may be particularly critical for underrepresented youth, for whom STEM role models and cultural brokers provide an otherwise unavailable sense of belonging and identity in STEM. The study will also access a New York City Public Schools data set comprised of student-level records containing biographical and demographic variables, secondary and postsecondary course enrollment and grades, exam scores, persistence/graduation indicators, linked responses to post-secondary surveys, and post-education employment records and wages. These data enable examination of inter-relationships between in-school achievement and out-of-school STEM experiences through comparison of program participants to similar non-participant peers. This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.
This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
To address the challenges of recruiting, training, impacting, and retaining scientists in informal outreach and to capitalize on access to the public through a local science center, Washington University and the St. Louis Science Center (SLSC; http://www.slsc.org) collaborated to create a program that combines informal science communication and the professional development of graduate students. The program sought to produce scientists who were trained to be effective informal educators. Workshops developed and led by SLSC staff, followed by personalized coaching, covered essential science
The CADRE Early Career Guide offers advice from experienced DR K-12 awardees on becoming a successful researcher in the field of STEM education. The guide also profiles a support program, the CADRE Fellows, for doctoral students in STEM education research.
DATE:
TEAM MEMBERS:
Jennifer StilesCatherine McCullochCommunity for Advancing Discovery Research in Education (CADRE)
There is a gap between the discipline of economics and the public it is supposedly about and for. This gap is reminiscent of the divide that led to movements for the public understanding of and public engagement with the natural sciences. It is a gap in knowledge, trust, and opinions, but most of all it is a gap in engagement. In this paper we ask: What do we need to think about — and what do we need to do — in order to bring economics and its public into closer dialogue? At stake is engaged, critical democracy. We turn to the fields of public understanding of science and science studies for