Collaboration efforts between educator preparation programs and children's science museums are important in assisting elementary pre-service teachers connect the theory they have learned in their classrooms with the actual practice of teaching. Elementary pre-service teachers must not only learn the science content, but how to effectively deliver that science content to a group of students. One university provided their elementary pre-service teachers with the opportunity to prepare and deliver science lessons to students in a children's science museum in south Texas.
The Ross Sea Project was a Broader Impact projects for an NSF sponsored research mission to the Ross Sea in Antarctica. The project, which began in the summer of 2010 and ended in May 2011, consisted of several components: (1) A multidisciplinary teacher-education team that included educators, scientists, Web 2.0 technology experts and storytellers, and a photographer/writer blogging team; (2) Twenty-five middle-school and high-school earth science teachers, mostly from New Jersey but also New York and California; (3) Weeklong summer teacher institute at Liberty Science Center (LSC) where teachers and scientists met, and teachers learned about questions to be investigated and technologies to be used during the mission, and how to do the science to be conducted in Antarctica; (4) COSEE NOW interactive community website where teachers, LSC staff and other COSEE NOW members shared lesson plans or activities and discussed issues related to implementing the mission-based science in their classrooms; (5) Technological support and consultations for teachers, plus online practice sessions on the use of Web 2.0 technologies (webinars, blogs, digital storytelling, etc.); (6)Daily shipboard blog from the Ross Sea created by Chris Linder and Hugh Powell (a professional photographer/writer team) and posted on the COSEE NOW website to keep teachers and students up-to-date in real-time on science experiments, discoveries and frustrations, as well as shipboard life; (7) Live webinar calls from the Ross Sea, facilitated by Rutgers and LSC staff, where students posed questions and interacted directly with shipboard researchers and staff; and (8) A follow-up gathering of teachers and scientists near the end of the school year to debrief on the mission and preliminary findings. What resulted from this project was not only the professional development of teachers, which extended into the classroom and to students, but also the development of a relationship that teachers and students felt they had with the scientists and the science. Via personal and virtual interactions, teachers and students connected to scientists personally, while engaged in the science process in the classroom and in the field.
This study follows an ethnically and economically diverse sample of 33 high school students to explore why some who were once very interested in science, engineering, or medicine (SEM) majors or careers decided to leave the pipeline in high school while others persisted. Through longitudinal interviews and surveys, students shared narratives about their developing science identities, SEM participation and aspirations. In analysis, three groups emerged (High Achieving Persisters, Low Achieving Persisters, and Lost Potentials), each experiencing different interactions and experiences within
This study explored the influence of a Saturday Science program that used explicit reflective instruction through contextualized and decontextualized guided and authentic inquiry on K‐2 students’ views of nature of science (NOS). The six‐week program ran for 2.5 hours weekly and emphasized NOS in a variety of science content areas, culminating in an authentic inquiry designed and carried out by the K‐2 students. The Views of Nature of Science Form D was used to interview K‐2 students pre‐ and post‐instruction. Copies of student work were retained for content analysis. Videotapes made of each
Elementary school children are capable of reproducing sophisticated science process skills such as observing, designing experiments, collecting data, and evaluating evidence. An understanding of the nature of scientific knowledge requires more than teaching and learning the performance of these skills. It also requires an appreciation of how these actions lead to knowledge generation and shape its durable and tentative nature. Our understanding of activities that support the teaching and learning of the nature of scientific knowledge is still growing. This study compares how scientific
Informing an Effective Response to Climate Change, a volume in the America's Climate Choices series, describes and assesses different activities, products, strategies, and tools for informing decision makers about climate change and helping them plan and execute effective, integrated responses. It discusses who is making decisions (on the local, state, and national levels), who should be providing information to make decisions, and how that information should be provided. It covers all levels of decision making, including international, state, and individual decision making. While most
The school field trip constitutes an important demographic market for museums. Field trips enlist the energies of teachers and students, schools and museums, and ought to be used to the best of their potential. There is evidence from the literature and from practitioners that museums often struggle to understand the needs of teachers, who make the key decisions in field trip planning and implementation. Museum personnel ponder how to design their programs to serve educational and pedagogical needs most effectively, and how to market the value of their institutions to teachers. This paper
WaterBotics is the underwater robotics curriculum and program that is being disseminated to four regions through a National Science Foundation grant, in collaboration with national and state partners. Its goal is to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. The curriculum, which can be used either in traditional classroom settings or in after-school and summer-camp situations, is problem-based, requiring teams of students to work together to design, build, test, and redesign underwater robots, or “bots” made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges.
DATE:
-
TEAM MEMBERS:
Stevens Institute of TechnologyMercedes McKayPatricia Holahan
Archaeology education activities in informal science learning settings are an underutilized, but effective strategy for teaching science inquiry skills in socially and culturally relevant contexts. This project investigated the potential for archaeological content and inquiry strategies to help informal science learning institutions increase learning with diverse ISE audiences. The project was based on foundational research for the development of a national research framework for archaeology education and a plan for developing high-quality science learning opportunities for under-represented
DATE:
TEAM MEMBERS:
Michael BrodyJohn FisherJeanne MoeHelen Keremedjiev
In the United States, African Americans are underrepresented in science careers and underserved in pre-collegiate science education. This project engaged African American elementary students in culturally relevant science education through archaeology and thereby increased positive dispositions toward science. While imagining what the lives of their ancestors were like, students practiced scientific inquiry and used natural sciences to analyze archaeological sites. The project helped to improve science literacy among African American elementary students through archaeological inquiry and
Across the country many schools and communities are trying to create and support efforts to institutionalize partnerships for learning, including those that rethink the use of time across the school day and year, and across the developmental continuum. These partnerships are not merely transactional in nature but rather transformative: partnering entities work together to integrate and complement their services with the shared goal of supporting children’s learning. Referred to by different terms—integrated, expanded, or complementary learning—the concept has one critical element in common
In the past 15 years, Tangible User Interfaces (TUIs) have emerged as an ideal technology for delivering child-computer interaction that is adapted to children’s psychomotor and cognitive skills development. The rapid evolution of these tangible technologies has meant that there has been little or no time to build a foundation for the design of games and learning applications that could offer pleasant and useful experiences to children. Our research group specializes in multimodal and natural human-computer interaction and conducts child-focused research that highlights children’s real needs
DATE:
TEAM MEMBERS:
Javier MarcoSandra BaldassarriEva CerezoDiana Yifan XuJanet Read