Skip to main content

Community Repository Search Results

resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This Research in Service to Practice project will examine how a wide range of pre-college out-of-school-time activities facilitate or hinder females' participation in STEM fields in terms of interest, identity, and career choices. The study will address the ongoing problem that, despite females' persistence to degree once declaring a major in college, initially fewer females than males choose a STEM career path. To uncover what these factors might be, this study will look at the extent to which college freshmen's pre-college involvement in informal activities (e.g., science clubs, internships, shadowing of STEM professionals, museum-going, engineering competitions, citizen science pursuits, summer camps, and hobbies) is associated with their career aspirations and avocational STEM interests and pursuits. While deep-seated factors, originating in culture and gender socialization, sometimes lower females' interest in STEM throughout schooling, this study will examine the degree to which out-of-school-time involvement ameliorates the subtle messages females encounter about women and science that can interfere with their aspiration to a STEM careers.

The Social Cognitive Career Theory will serve as the theoretical framework to connect the development of interest in STEM with students' later career choices. An epidemiological approach will be used to test a wide range of hypotheses garnered from a review of relevant literature, face-to-face or telephone interviews with stakeholders, and retrospective online surveys of students. These hypotheses, as well as questions about the students' demographic background and in-school experiences, will be incorporated into the main empirical instrument, which will be a comprehensive paper-and-pencil survey to be administered in classes, such as English Composition, that are compulsory for both students with STEM interests and those without by 6500 students entering 40 large and small institutions of higher learning. Data analysis will proceed from descriptive statistics, such as contingency tables and correlation matrices, to multiple regression and hierarchical modeling that will link out-of-school-time experiences to STEM interest, identity, and career aspirations. Factor analysis will be used to combine individual out-of-school activities into indices. Propensity score weighting will be used to estimate causal effects in cases where out-of-school-time activities may be confounded with other factors. The expected products will be scholarly publications and presentations. Results will be disseminated to out-of-school-time providers and stakeholders, educators, and educational researchers through appropriate-level journals and national meetings and conferences. In addition, the Public Affairs and Information Office of the Harvard-Smithsonian Center for Astrophysics will assist with communicating results through mainstream media. Press releases will be available through academic outlets and Op-Ed pieces for newspapers. The expected outcome will be research-based evidence about which types of out-of-school STEM experiences may be effective in increasing young females' STEM interests. This information will be crucial to educators, service providers, as well as policy makers who work toward broadening the participation of females in STEM.
DATE: -
TEAM MEMBERS: Roy Gould Philip Sadler Gerhard Sonnert
resource research Media and Technology
A short outline of the evolution of communications at CERN since 1993 and the parallel growth of the need both for professional communications and, at the same time, the need for training in more and more complex competencies for the new profession.
DATE:
TEAM MEMBERS: Paola Catapano
resource research Public Programs
U.S. strength in science, technology, engineering, and mathematics (STEM) disciplines has formed the basis of innovations, technologies, and industries that have spurred the nation’s economic growth throughout the last 150 years. Universities are essential to the creation and transfer of new knowledge that drives innovation. This knowledge moves out of the university and into broader society in several ways – through highly skilled graduates (i.e. human capital); academic publications; and the creation of new products, industries, and companies via the commercialization of scientific
DATE:
TEAM MEMBERS: National Academies of Sciences, Engineering, and Medicine
resource research Public Programs
Sharing scientific knowledge in conflict zones may not sound like a priority. Still science communicators can contribute to address social issues by inviting people to experience research practice, engaging them in scientific questioning and constructive dialog.
DATE:
TEAM MEMBERS: Leila Perie Livio Riboli-Sasco Claire Ribrault
resource research Public Programs
Oficina Desafio, Challenge Workshop, is a project of UNICAMP Exploratory Science Museum – the Science Center of the State University of Campinas (Brazil). It is an outreach project, consisting of a fully - equipped mobile workshop constructed on a truck, which visits schools and gives the students open solution real problems challenging them to “design, construct and operate a device” capable of solving the challenge. Analysis of the evaluation forms answered by school students reveals that participants of the challenges perceive it as a “learning opportunity”, in the sense they identify
DATE:
TEAM MEMBERS: Marcelo Firer
resource research Media and Technology
We have analyzed the popularization activities undertaken by ten thousand CNRS researchers by means of their annual reports for the years 2004, 2005 and 2006. This is the first time that such an extensive statistical study on science popularization practices is carried out. Our main findings are : - the majority of researchers is not involved in popularization (51% has not done any popularization over the three-year period, two thirds have been involved in no more than one popularization action). - popularization practices are extremely diverse, both at the individual level (we have identified
DATE:
TEAM MEMBERS: Pablo Jensen Yves Croissant
resource project Public Programs
Science Museum of Minnesota will create three live theater productions highlighting current laboratory and field research studies of science issues with strong topical relevance to families with school-age children, school groups, and adult lifelong learners. Shows will align with the appropriate grade levels of the Minnesota Science Education Standards in three age levels: early elementary (grades 1–3), upper elementary and middle school (grades 4–8), and high school students and adult learners. The shows will be performed in daily rotation at the museum to entertain, inform, and challenge visitors to reflect on current science issues. Theater staff will disseminate the shows through various national conferences, websites, and professional associations, enabling colleagues nationwide to download the scripts free of charge and present topical science issues at their own museums.
DATE: -
TEAM MEMBERS: Stephanie Long
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource research Public Programs
This article from "The Atlantic" describes ways that teachers are integrating hands-on and experiential STEM learning into the classroom, which include collaboration with informal learning environments through creative field trips.
DATE:
TEAM MEMBERS: Alexandra Ossola
resource research Public Programs
In this chapter we explore how people build new theories in the context of collaborative scientific thinking. As illustrated by many of the chapters in this volume, our default notion of "scientific thinking" has changed from that of the lone scientist or student toiling away on a magnum opus or in the laboratory, to that of people working as part of collaborative groups who negotiate goals for the task, co-construct knowledge, and benefit from the diverse prior knowledge that each collaborator brings to the table. In some ways, conceptualizing scientific thinking as fundamentally
DATE:
TEAM MEMBERS: Margarita Azmitia Kevin Crowley
resource research Public Programs
Elementary school children are capable of reproducing sophisticated science process skills such as observing, designing experiments, collecting data, and evaluating evidence. An understanding of the nature of scientific knowledge requires more than teaching and learning the performance of these skills. It also requires an appreciation of how these actions lead to knowledge generation and shape its durable and tentative nature. Our understanding of activities that support the teaching and learning of the nature of scientific knowledge is still growing. This study compares how scientific
DATE:
TEAM MEMBERS: Susan Kirch
resource research Public Programs
This paper uses a possible selves theoretical framework to examine whether and how adolescent girls' images of themselves as future scientists change during their transition from high school to college. Forty-one female high school graduates from diverse ethnic and socioeconomic backgrounds, who had enrolled in an intensive math and science program while in high school, participated in interviews focused on their perceptions of factors that influenced their career plans over time. Participants suggested that career-related internships and intensive academic programs, especially those that
DATE:
TEAM MEMBERS: Becky Wai-Ling Packard Dam Nguyen