The Please Touch Museum is requesting $684,602 for the development of educational resource materials in science and mathematics for four-year old children, and training for their parents and teachers in Head Start and other daycare programs. This 44 month project will develop, test, and produce six materials-based science and math activity kits, science training workshops for parents and daycare educators, and related family materials and events. It will culminate in a national dissemination program to promote more effective preschool science and math education through materials- based science inquiry and increased professional relations between educators in youth museums and daycare centers.
DATE:
-
TEAM MEMBERS:
Marzy SykesRenee HenryTracey Prendergast
resourceprojectProfessional Development, Conferences, and Networks
Rhode Island Information Technology Experiences for Students and Teachers (RI-ITEST) is a comprehensive ITEST project for high school students and teachers. The goal of RI-ITEST is to prepare students from diverse backgrounds for careers in information technologies by engaging them in exciting, inquiry-based learning activities that use sophisticated computational models in support of a revolutionary science curriculum. It advances science education by enhancing the Physics First initiative in Rhode Island through the use of NSF funded student materials based on molecular modeling and promotes IT education by teaching modeling skills and providing students with career and vocational information on the use of computational models. The project provides over 120 hours of credit-bearing activities for 100 teachers and full support for classroom implementation. RI-ITEST is developing an optimal placement of the interactive materials from CC's Science of Atoms and Molecules project in the Physics First courses in Rhode Island; developing IT materials that are coordinated with the student materials that emphasize modeling skills and the career and vocational dimensions of computational modeling; preparing100 diverse Rhode Island science teachers in two cohorts to offer a course in the Physics-Chemistry-Biology sequence; developing materials and supports for using molecular dynamics and related IT materials for teachers in Rhode Island and elsewhere who are not ITEST participants; generating evidence for the effectiveness of the IT-enhanced project materials for increasing student learning and changing student attitudes about science, mathematics, and technology careers; reaching parents, guidance counselors, school administrators, and business partners with information about the project, student productions, and evidence for effectiveness; disseminating materials and findings to other teachers, programs, and districts nationwide.
DATE:
-
TEAM MEMBERS:
Daniel DamelinGerald KowaiczykJames Magyar
resourceprojectProfessional Development, Conferences, and Networks
The Buffalo Society of Natural Sciences plans to conduct a 5 year project to train 150 mentor teachers (30 teachers/year) and their principals, who will then train the remaining 1100 elementary teachers in the Buffalo Public School System. The training would include two 5-week summer sessions (in a Magnet school that is physically incorporated into the Buffalo Museum of Science) and 4 in-service workshops during the academic years following each of the summer workshops. This innovative leadership project is a collaborative effort between the Buffalo Society of Natural Sciences (including both education and curatorial/science staff persons) the Buffalo Public Schools, and individuals from local colleges and universities. The setting of the project is enhanced by a Science and Math Magnet School which is housed within the museum, and by the school/museum's location in a largely inner city environment with easy accessibility to minority persons. The project is designed to provide mentor teachers with a strong science background in pedagogy and content over a two-year period of summer and academic-year workshops, and to prepare and support these mentors as they inservice their colleagues. Project staff from the museum, public schools, and the academic community will provide strong support through academic-year workshops, site visits and telecommunications networking. Principals will be appropriately involved, and will work with mentors to develop a science inservice program tailored to meet the needs of their individual schools; as a consequence, virtually all of the 1100 K-6 classroom teachers of science in the Buffalo Public Schools will have been prepared to teach investigative, hands-on science to their students. Non-NSF cost sharing is approximately 27.9% of the amount requested from NSF.
DATE:
-
TEAM MEMBERS:
Peter Dow
resourceprojectProfessional Development, Conferences, and Networks
The Nanoscale Science and Engineering Education (NSEE) Center for Learning and Teaching (NCLT) would focus on the research and development of nano-science instructional resources for grades 7-16, related professional development opportunities for 7-12 teachers, and programs infused with nano-science content for education doctoral students. The Center would bring together educators and scientists from several areas of nano-science and engineering research to collaborate with science teachers and doctoral candidates in education on both the development of the resources and research on their efficacy. The PI has prior experience as director of the Materials World Modules project, an NSF-funded curriculum currently in use in several secondary schools across the country. Lead partners in the proposed Center are Northwestern University, Purdue University, University of Michigan, University of Illinois at Chicago and University of Illinois at Urbana-Champaign. Additional partners include Argonne National Laboratory, West Point Military Academy, Alabama A & M University, Fisk University, Hampton University, Morehouse College and University of Texas at El Paso. The additional partners will widen the geographic range of the project, expanding opportunities to reach a diverse and currently underrepresented population of graduate students, teachers and ultimately students. STEM and Education faculty and researchers from the partner institutions would participate in interdisciplinary teams to address the Center's mission: Provide national education leadership and resources for advancing NSEE Create and implement professional development programs in NSEE Use innovative ideas in learning to design instructional materials for grades 7-16 Conduct research relating to integration of NSEE into science, technology, engineering and mathematics (STEM) education.
DATE:
-
TEAM MEMBERS:
R. P. H. ChangThomas MasonNcholas GiordanoJoseph Krajcik
"The Connecticut Museum Collaborative for Science Education" is teacher enhancement program that will serve approximately 5,000 middle school teachers (and their students) from throughout Connecticut over a three-year program period. The proposed program has been developed cooperatively by four of Connecticut's Science Museums and Centers (The Discovery Museum, The Maritime Center at Norwalk, Mystic Marinelife Aquarium, and Talcott Mountain Science Center), in consultation with the school districts they serve and the Connecticut Academy for Education in Mathematics, Science, and Technology, the State's leadership organization solely devoted to enhancing education in mathematics, science, and technology. The Collaborative seeks to enliven and enhance the teaching of science, mathematics, and technology by drawing upon the resources of Connecticut's science-rich institutions and related businesses and industry. The proposed project will provide direct services to a core group of 72 middle school teachers and their students in eight urban and suburban school districts at the four participating museums and in their classrooms, as well as teacher training, curriculum development, and networking activities. Larger numbers of teachers and their students will be served through a planned series of interactive video teleconferences. A theme-based approach will be followed in which the unifying theme of "Earth Resource Monitoring" will serve to connect the activities at the four cooperating museums. The central concept of the project is collaboration among museums throughout the state to provide a bridge between science-rich institutions and the schools for teacher enhancement, curriculum improvement, and student enrichment. Special program components involve the participation of business and industry through "Video Field Trips", and parents through a "Family Science" activity. The involvement of the Connecticut Academy for Education in Mathematics, Science and Technolo gy as a member of the "Connecticut Collaborative" provides a direct link for integration of project activities into Connecticut's NSF-funded Statewide Systemic Initiative.
The Franklin Institute proposes to establish the Science Learning Network (SLN), a unique online collaborative of science museums, industry and schools to support the teaching and learning of science, mathematics and technology (SMT) in grades K-8. The SLN will integrate the educational resources offered by science/technology centers with the power of telecomputing networking to provide powerful new support for teacher development and science learning. By December 1997 the SLN will develop and evaluate the following: UniVERSE - an online SMT database and software package which will provide interactive capabilities to actively and intelligently assist K-8 classroom teachers in their Internet explorations, much like an electronic "librarian." Online Museum Collaborative - a national consortium of science museums (The Franklin Institute, the Exploratorium, Oregon Museum of Science and Industry, Museum of Science - Boston, and Science Museum of Minnesota) that will pool their resources and expertise to create online assets and provide ongoing professional development on telecomputing networking for precollege SMT teachers. Online Demonstration Schools - a network of K-8 schools, working in collaboration with consortium museums and Unisys Corporation volunteers as demonstration sites for online teaching and learning in SMT. Over the course of three years, the SLN will provide direct support to 180 teachers and 3,000 K-8 students in the online demonstration schools. Through existing teacher networks, each museum will offer professional development for an additional 200 teachers each year. The Urban Systemic Initiatives in Philadelphia and Miami offer the potential for broader, systemic impact in those cities. By the end of the grant period, the SLN will provide field- tested models of a new kind of online SMT community through the collaboration of science museums with industry and schools. The sustainable impact of the SLN will be assured by UniVERSE's status as a publicly accessible database and software package and the development of the national consortium of online museums, whose network resources will be made available on an ongoing basis to educators. The three-year formative development of the online demonstration schools will contribute vital data to precollegiate school reform in SMT, showing how schools build capacity to become members of the online community and demonstrating how teaching and learning are enhanced by online resources. Unisys Corporation has pledged its support to this project and will provide matching funds for up to 40% of the total NSF award.
DATE:
-
TEAM MEMBERS:
Stephen BaumannWayne RansomPaul Helfrich
Maine is a rural state with unequal access to computers and information technology. To remedy this, the Maine laptop program supplies iBooks to every seventh and eighth grade student in the state. The goal of EcoScienceWorks is to build on this program and develop, test and disseminate a middle school curriculum featuring computer modeling, simple programming and analysis of GIS data coupled with hands-on field experiences in ecology. The project will develop software, EcoBeaker: Maine Explorer, to stimulate student exploration of information technology by introducing teachers and students to simple computer modeling, applications of simulations in teaching and in science, and GIS data manipulation. This is a three-year, comprehensive project for 25 seventh and eighth grade teachers and their students. Teachers will receive 120 contact hours per year through workshops, summer sessions and classroom visits from environmental scientists. The teachers' classes will field test the EcoScienceWorks curriculum each year. The field tested project will be distributed throughout the Maine laptop program impacting 150 science teachers and 17,000 middle school students. EcoScienceWorks will provide middle school students with an understanding of how IT skills and tools can be used to identify, investigate and model possible solutions to scientific problems. EcoScienceWorks aligns with state and national science learning standards and integrates into the existing middle school ecology curriculum. An outcome of this project will be the spread of a field tested IT curriculum and EcoBeaker: Maine Explorer throughout Maine, with adapted curriculum and software available nationally.
DATE:
-
TEAM MEMBERS:
Walter AllanEric KlopferEleanor Steinberg
resourceprojectProfessional Development, Conferences, and Networks
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
Boston's Museum of Science (MOS), with Harvard as its university research partner, is extending, disseminating, and further evaluating their NSF-funded (DRL-0714706) Living Laboratory model of informal cognitive science education. In this model, early-childhood researchers have both conducted research in the MOS Discovery Center for young children and interacted with visitors during the museum's operating hours about what their research is finding about child development and cognition. Several methods of interacting with adult visitors were designed and evaluated, including the use of "research toys" as exhibits and interpretation materials. Summative evaluation of the original work indicated positive outcomes on all targeted audiences - adults with young children, museum educators, and researchers. The project is now broadening the implementation of the model by establishing three additional museum Hub Sites, each with university partners - Maryland Science Center (with Johns Hopkins), Madison Children's Museum (with University of Wisconsin, Madison), and Oregon Museum of Science and Industry (with Lewis & Clark College). The audiences continue to include researchers (including graduate and undergraduate students); museum educators; and adults with children visiting the museums. Deliverables consist of: (1) establishment of the Living Lab model at the Hub sites and continued improvement of the MOS site, (2) a virtual Hub portal for the four sites and others around the country, (3) tool-kit resources for both museums and scientists, and (4) professional symposia at all sites. Intended outcomes are: (1) improve museum educators' and museum visiting adults' understanding of cognitive/developmental psychology and research and its application to raising their children, (2) improve researchers' ability to communicate with the public and to conduct their research at the museums, and (3) increase interest in, knowledge about, and application of this model throughout the museum community and grow a network of such collaborations.
The Center for Informal Learning and Schools (CILS) is a five-year collaborative effort between the Exploratorium in San Francisco, the University of California at Santa Cruz, and King's College London. The purpose of the Center is to study the intersection of informal science learning that takes place in museums and science centers and formal learning that takes place in schools, and to prepare leaders in informal science education. Through the efforts of the center, new doctoral level leaders will be prepared who understand how informal science learning takes place and how informal institutions can contribute to science education reform. A Ph.D. program will be offered to 16 individuals at King's College London (two cohorts of eight) and a post-doctoral program to six scientists interested in issues of learning and teaching in informal settings. A doctoral program is planned at the University of California at Santa Cruz for 24 students, 12 whose interests are primarily in education and 12 who come from the sciences. In addition to doctoral level training, there will be a certification program for existing informal science professionals to better enable them to support teachers, students and the general public. That program will provide 160 informal science educators 120 hours of professional development experiences, and an additional 24 informal science educators with a master's degree in informal science education at UC Santa Cruz. A Bay Area Institute will be developed to serve as a central focus for all CILS activities. It will bring together researchers and practitioners; it will offer courses and workshops for graduate students; and it will provide a central location for reporting research findings and methodologies that focus on how informal learning institutions can best contribute to science education reform.
"Saving Species" will engage large and diverse public audiences in inquiry-based learning and environmental stewardship through a system of exhibits at zoos and other informal science education institutions throughout the U.S. The exhibit system will include more than 70 touch screen interactives and related technological infrastructure being created by Project Dragonfly at Miami University (Ohio). Project partners include the Cincinnati Zoo & Botanical Garden, Brookfield Zoo, Cleveland Metroparks Zoo, Columbus Zoo & Aquarium, Denver Zoo, Liberty Science Center, Louisville Zoological Garden, New York State Zoo, Oregon Zoo, Pittsburgh Zoo, Riverbanks Zoo, Santa Barbara Zoo, Shedd Aquarium, Toledo Zoo, The Wilds, Woodland Park Zoo, and Zoo Atlanta. Touch screen exhibit components will be designed for specific programs at partner zoos. The partner institutions in this consortium are establishing exhibits nationwide linked to one of three Saving Species campaigns: 1) the Great Ape Campaign allows families to conduct research on captive ape populations and to help save wild apes by joining the work of experienced field researchers; 2) the Wild Cat Campaign focuses on endangered cat species and allows families to join in conservation efforts along with professionals; 3) the Sustaining Life Campaign builds on widespread interest and growing exhibitry in environmental stewardship, renewable energy, and climate change. The consortium includes a shared library of public inquiry and public-action tools (e.g., cell phone recycling), as well as remote monitoring capabilities that provide real-time measures of station success, facilitating the development of variations of exhibit interactives across the country. More than 500 staff from informal science institutions are participating in "Saving Species" professional development through workshops and graduate courses in major cities and conservation sites worldwide. The formal educational opportunities include two new Master\'s degree programs co-delivered by Miami University and informal science institutions: (1) the Advanced Inquiry Program, and (2) the Global Field Program. Strategic partners include the Association of Zoos & Aquariums, public television, Conservation International, and the Society of Conservation Biology. Project evaluation by the Institute for Learning Innovation includes specific assessment protocols that are identifying patterns of engagement by gender, ethnicity, and socio-economic class so that disparities can be addressed across these demographics. A planning study and front-end evaluation will inform the future development of personalized, post-visit engagement opportunities on social networking platforms. "Saving Species" will achieve broad impact nationally, reaching millions of visitors to the participating institutions annually during the funding period and beyond, fostering the relationship between science inquiry and public action, and building multi-institutional partnerships committed to sustaining life on our planet.
The Developmental Studies Center is supporting the active involvement of parents in their children's mathematical development, helping parents understand more about how their children learn mathematically and socially, and increasing the likelihood that children will discuss mathematics with an adult who is significant in their lives. The first phase of this project develops, pilot tests, and evaluates a Homeside Math resource book for each grade level, K-2, with activities teachers can send home to foster positive interaction about mathematics between parents and their children. These activities are related to exemplary school curricula, particularly those developed with NSF support. The next phase develops a limited number of additional activities to add to the Homeside Math collection to be published as Community Math. Community Math is a resource book for youth workers with activities that foster mathematical discussions between children ages 5-8 and a significant adult and can be used in a variety of community organization settings and sent home for family use. Workshops are developed for parents, teachers, and youth workers to strengthen their knowledge of child-centered instructional strategies, meaningful activities, and how children develop mathematically and socially. And facilitator workshops are developed for parents, teachers, and youth workers to enable them to lead workshops for parents.