Skip to main content

Community Repository Search Results

resource project Public Programs
One way to encourage youth to pursue training in the STEM fields and enter the STEM workforce is to foster interest and engagement in STEM during adolescence. Informal STEM Learning Sites (ISLS) provide opportunities for building interest and engagement in the STEM fields through a multitude of avenues, including the programming that they provide for youth, particularly teens. Frequently, ISLS provide opportunities to participate in volunteer programs, internships or work, which allow teens both to learn relevant STEM knowledge as well as to share that knowledge with others through opportunities to serve as youth educators. While youth educator programs provide rich contexts for teens to engage as both learners and teachers in these informal STEM environments, research to date has not yet identified the relationship between serving as youth educators and STEM engagement. Thus, the goal of this project is to document the impact of youth educators on visitor learning in ISLS and to identify best practices for implementing youth educator programs. The project studies STEM interests and engagement in the youth participants and the visitors that they interact with at six different ISLS in the US and UK. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This project examines youth educator experiences related to STEM identity, educational aspirations, and motivation. The project also identifies outcomes that the youth educators have on visitors to ISLS in terms of knowledge, interest, and engagement in STEM. The specific aims are: 1) Outcomes for Teens - To measure the longitudinal impact of participation in an extended youth educator experience in an ISLS; 2) Outcomes for Visitors - To compare visitor engagement with and learning from exhibits in ISLS when they interact with a youth educator, relative to outcomes of interacting with an adult educator or no educator; and 3) Outcomes Across Demographics and STEM Sites - To examine differences in visitor engagement based on participant characteristics such as socio-economic status (SES), age, gender, and ethnicity and to compare outcomes of youth educator experiences across different types of ISLS. This research, which draws on expectancy value theory and social cognitive theory, will follow youth participants longitudinally over the course of 5 years and use latent variable analyses to understand the impact on the youth educators as well as the visitors with whom they interact. Importantly, the results of this research will be used to develop best practices for implementing youth educator programs in ISLS and the results will be disseminated to both academic and practice-based communities.

This project has clear and measurable broader impacts in a variety of ways. First, the project provides guidance to improve programming for youth in ISLS, including both the sites involved directly in the research and to the larger community of ISLS through evaluation, development, and dissemination of best practices. Additionally, this project provides rigorous, research-based evidence to identify and describe the outcomes of youth educator programs. This study directly benefits the participants of the research, both the visiting public and the youth educators, through opportunities to engage with science. The findings speak to issues of access and inclusivity in ISLS, providing insight into how to design environments that are welcoming and accessible for diverse groups of learners. Finally, this project provides evidence for best practices for ISLS in developing programs for youth that will lead to interest in and pursuit of STEM careers by members of underrepresented groups.
DATE: -
TEAM MEMBERS: Adam Hartstone-Rose Matthew Irvin Kelly Lynn Mulvey Elizabeth Clemens Lauren Shenfeld
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Public Programs
This 4-year project addresses fundamental equity issues in informal Science, Technology, Engineering and Mathematics (STEM) learning. Access to, and opportunities within informal STEM learning (ISL) remain limited for youth from historically underrepresented backgrounds in both the United States and the United Kingdom. However, there is evidence that ISL experiences can expand opportunities for youth learning and development in STEM, for instance, increase positive attitudes towards educational aspirations and future careers/pursuits, improve grades and test scores in school settings, and decrease disciplinary action and dropout rates. Through research and development, this project brings together researchers and practitioners to focus on the experiences, practices and tools that will support equitable youth pathways into STEM. Working across conceptual frameworks and ISL settings (e.g. science centers, community groups, zoos) and universities in four urban contexts in two different nations, the partnership will produce a coherent knowledge base that strengthens and expands research plus practice partnerships, builds capacity towards transformative research and development, and develops new models and tools in support of equitable pathways into STEM at a global level. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This Equity Pathways project responds to three challenges at the intersections of ISL research and practice in the United States and the United Kingdom: 1) lack of shared understanding of how youth from historically underrepresented backgrounds perceive and experience ISL opportunities across national contexts, and the practices and tools needed to support empowered movement through ISL; 2) limited shared understanding and evidence of core high-leverage practices that support such youth in progressing within and across ISL, and 3) limited understanding of how ISL might be equitable and transformative for such youth seeking to develop their own pathways into STEM. The major goal of this Partnership is for practitioners and researchers, working with youth through design-based implementation research, survey and critical ethnography, to develop new understandings of how and under what conditions they participate in ISL over time and across settings, and how they may connect these experiences towards pathways into STEM. The project will result in: 1) New understandings of ISL pathways that are equitable and transformative for youth from historically underrepresented backgrounds; 2) A set of high leverage practices and tools that support equitable and transformative informal science learning pathways (and the agency youth need to make their way through them); and 3) Strengthened and increased professional capacity to broaden participation among youth from historically underrepresented backgrounds in STEM through informal science learning. The project will be carried out by research + practice partnerships in 4 cities: London & Bristol, UK and Lansing, MI & Portland, OR, US, involving university researchers (University College London, Michigan State University, Oregon State University/Institute for Learning Innovation) practitioners in science museums (@Bristol Science Centre, Brent Lodge Park Animal Centre, Impressions 5, Oregon Museum of Science & Industry) and community-based centers (STEMettes, Knowle West Media Centre, Boys & Girls Clubs of Lansing, and Girls, Inc. of the Pacific Northwest).
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Lynn Dierking Carmen Turner
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The subject of physics and all of its sub-disciplines are becoming more prevalent in the public press as the research results appear to be quite interesting and important. While the physics discipline has made a Nation-wide effort to acquaint the public with physics knowledge through informal education learning experiences for years, it has not been as successful as the community desires. Thus, this project is aimed to gather all of the informal and outreach physics education efforts that have been attempted in the hope of finding the best practices for learning physics concepts and practices. A compendium will be published to inform future opportunities on how to educate the public through informal and outreach mechanisms. This project is a collaboration between Michigan State University and the University of Colorado. The physics community has a long history of engaging audiences in informal education activities. Physics institutions that facilitate informal programs include university departments, national laboratories and centers, and professional societies and organizations. There is, however, no systemic understanding of how these programs are facilitated, nor an assessment of the collective impact that these programs have on participants. This project will address numerous research questions in the broad areas of Activity Detail, Structural Aspects, and Assessment. Further, their efforts will determine the "who, what, why, where and how" of informal physics offerings, focusing on their facilitation, impact on participants, and the academic and discipline-specific cultures from which these programs originate. The study has several definite research outcomes that will emerge from this methodology: 1) They will produce a survey of the informal efforts of university physics departments, national physics labs and national physics organizations, 2) They will develop a taxonomy of informal physics programs from which we can characterize the landscape of programs, and 3) by investigating both "successful" as well as "failed" or terminated programs, they will develop an understanding of the culture and resources needed to support outreach from these research findings. In addition, they will produce published works that can be utilized by informal practitioners and administrators in physics to examine current programs and guide the development of new programs. With regards to the research questions and framework, the overarching and driving question for this research project is: "What is the landscape of informal physics learning, specifically, of those programs in the United States facilitated by physicists and physics students at academic institutions, national labs and by national physics organizations?" This study will provide a robust understanding of the state of informal physics programs and outreach by physicists in the United States today. Findings will inform practitioners and administrators as to how best to support and design informal physics programming. The results will also have broad implications for other discipline-specific informal STEM programming. The primary data collection methods will be a nationwide survey and interviews with a large sample of informal practitioners from the physics community. Site visits will be conducted with a subset of these programs in order to observe programs in action and to glean insights from university participants, community partners, public, and K-12 audiences.
DATE: -
TEAM MEMBERS: Kathleen Hinko Noah Finkelstein
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will embed public engagement with science (PES) into the cultures and practices of two Long-Term Ecological Research (LTER) sites: the Hubbard Brook Experimental Forest in New Hampshire and the Harvard Forest in Massachusetts. The goals are 1) to build knowledge about the mutual learning between scientists and adult stakeholders in face-to-face engagement setting and 2) to develop evidence-based practices in the content of place-based ecosystem research. This is a collaborative project of 3 universities (Michigan State University, Harvard, and CUNY) and the two LTERs. Two primary research questions guide this work. First, how willing are participating scientists to take part in PES? What are their attitudes and beliefs about whether engagement can be effective and whether they have the necessary skills? Second, how willing are participating scientists to build relationships with stakeholders using normed tactics? Both qualitative and quantitative methods will be used to collect evidence including semi-structured interviews and surveys. A general set of hypothesis include that there will be positive changes in LTER scientists willingness to participate in PES, attitudes, and efficacy beliefs.
DATE: -
TEAM MEMBERS: John Besley Sarah Garlick Peter Groffman Pamela Templer Kathleen Lambert
resource project Public Programs
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.

This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE: -
TEAM MEMBERS: Ila Berman T. Donna Chen Karen Rheuban Qian Cai
resource project Professional Development and Workshops
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Blind youth are generally excluded from STEM learning and careers because materials for their education are often composed for sighted individuals. In this proposed Innovations in Development project, the PIs suggest that spatial acuity is an important element in order for blind persons to understand physical and mental structures. Thus, in this investigation, efforts will be made to educated blind youth in the discipline of engineering. A total of 200 blind students, ages 12-20 along with 30 informal STEM educators will participate in the program. This effort is shared with the National Federation of the Blind, Utah State University, the Science Museum of Minnesota, and the Lifelong Learning Group.

The National Federation of the Blind, in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota will develop a five-year Innovations in Development project in order to broaden the participation of blind students in STEM fields through the development of instruction and accessible tools that assess and improve the spatial ability of blind youth. The partnership with the Science Museum will facilitate the creation of informal science content for students and professional development opportunities for informal educators. Evaluation will be conducted by Lifelong Learning Group of the Columbus Center of Science and Industry. Activities will begin in year one with a week-long, engineering design program for thirty blind high-school students at the Federation of the blind headquarters in Baltimore. Year two will feature two similarly sized programs, taking place at the Science Museum. While spatial ability is linked to performance in science, research has not been pursued as to how that ability can be assessed, developed, and improved in blind youth. Further, educators are often unaware of ways to deliver science concepts to blind students in a spatially enhanced manner, and students do not know how to advocate for these accommodations, leading blind youth to abandon science directions. Literature on the influences of a community of practice on youth with disabilities, as well as nonvisual tools for experiencing engineering, is lacking. This project will advance understanding of how blind people can participate in science, and how spatial ability can be developed and bolstered through informal engineering activities and an existing community of practice.
DATE: -
TEAM MEMBERS: Anil Lewis Wade Goodridge
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings.The project plans to develop evidence-based principles to guide citizen science project owners in the coordinated management of project participants within the SciStarter landscape. SciStarter is a repository of over 1,500 citizen science (CS) projects. Through prior research, SciStarter 2.0 tools were developed which can be used to study and coordinate recruitment and retention strategies across projects. Coordinated management has the potential to deepen volunteer learning and growth and benefit project goals because it can address across-project skew (CS volunteers involved in multiple projects), evolving motivations, seasonal gaps, untapped synergies across projects, and other unanticipated factors that cannot be addressed via management within project silos. The project will increase the capacity of citizen science projects to achieve their myriad scientific, learning and conservation goals through enhanced coordination of volunteer management, facilitated by evidence-based guidance from the SciStarter's User's Manual for Project Owners. The findings of the research will guide project design and implementation towards synergies that increase the capacity of projects to generate scientific, learning, and conservation outcomes. Research about citizen scientists has focused on within-project assessments and comparisons of projects, but few have examined dynamics of recruitment, retention, and movement of individuals across projects. SciStarter is designed for embedded tracking of participation dynamics in a landscape of projects. The project will expand embedded assessment to measure scientific, learning, and conservation outcomes and their links to participation dynamics within and across projects. Through social network analysis, the project will describe patterns of bridges, ties, and distances among projects based on the cross-over of participants. The project will also propose qualitative research to understand project managers' perceptions of SciStarter and the costs and benefits of coordinated management of citizen scientists. The research is designed to provide insights into participation dynamics that will lead to subsequent knowledge building across citizen science projects, and determine whether new evidence about advantages and disadvantages of coordinated management will persuade project owners to rely less on the silo approach to volunteer management.
DATE: -
TEAM MEMBERS: Caren Cooper Lincoln Larson
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Broad Implementation project would scale up the CryptoClub Project, an afterschool and online program designed to engage middle school youth in mathematics and cryptography. The project builds on previous successful work and evaluation that is ready for scale up using a train-the-trainer model implemented through a partnership with the National Girls Collaborative. The project will train 160 new CryptoClub leaders who will then train 800 new leaders at 20 hub sites reaching 9600 students. In addition, professional development modules and webinars will continue to refresh leader skills. Other project components include an online multiplayer cryptography game, weekly challenges through social media, and digital cryptology badges for students.

The research uses a think-aloud method with students as they actually attempt to solve the cryptology problems using mathematical thinking. Three think-aloud studies will be performed during the Project. The research team will code transcripts of the interviews for evidence of the mathematical thinking intended to be addressed by each activity, as well as capturing unexpected kinds of thinking. Tasks will also be rated according to the type of knowledge elicited. A written report will include statistical analyses of the think-aloud and interview responses, interpreted in light of the overall CryptoClub goals. The findings will contribute to both future research efforts and practice. The evaluation by EDC uses a quasi-experimental design, which assesses project outcomes for trainers, leaders, students, and Internet users. EDC will also investigate the fidelity to the CryptoClub model as it is scaled up. These studies have strong potential for informing numerous other projects that are at a stage where scale up is under consideration.
DATE: -
TEAM MEMBERS: Janet Beissinger
resource project Media and Technology
Lineage is a comprehensive educational media and outreach initiative that will engage individuals and families in learning about deep time and evolution, helping audiences come to newfound understandings of the connections between the past, present, and future of life on Earth. The project is a partnership between Twin Cities PBS (TPT) and the Smithsonian Institution's National Museum of Natural History and is linked to the opening of that museum's new Deep Time Fossil Hall in June 2019. The project includes a two-hour film for national broadcast on PBS, and a 20-minute short version for exhibition in science centers. The documentaries will show how scientists, using paleontology, genetics, earth science and other disciplines, can reconstruct in detail the origins of living animals like birds and elephants, revealing their ancient past as well as evidence of ecological change that can inform our understanding of Earth today. Extensive educational outreach will include the creation of "Bone Hunter," an innovative VR (Virtual Reality) game designed for family co-play that engages multiple players in the process of paleontology as they piece together a fossil in a digital lab. Bone Hunter and other collaborative educational activities will be deployed at Family Fossil Festivals that will attract multi-generational learners. One such Festival will take place at the Smithsonian Institution in Washington, D.C., while others will be based at geographically diverse institutions that serve underserved rural as well as urban communities. Lineage is a collaboration between national media producers, noted learning institutions and researchers, including Twin Cities Public Television, the Smithsonian Institution / National Museum of Natural History, Schell Games, the Institute for Learning Innovation (ILI), and Rockman et al. One of the project's primary innovations is its exploration of new learning designs for families that use cutting-edge technologies (e.g. the Bone Hunter virtual reality game) and collaborative multi-generational learning experiences that advance science knowledge and inquiry-based learning. An external research study conducted by ILI will investigate how intergenerational co-play with physical artifacts compared to virtual artifacts influences STEM (Science Technology Engineering Mathematics) learning and engagement. The findings will lead to critical strategic impacts for the field, building knowledge about ongoing innovation in the free choice learning space. The project's external evaluation will be conducted by Rockman et al and evaluative findings, as well as the educational materials derived from the project, will be widely disseminated through partnerships with professional and educator groups. Clips from the Lineage film and related learning resources will be hosted on PBS LearningMedia, so educators can incorporate these resources into their classrooms, and students and lifelong learners can explore and discover on their own. The project outcomes will have broad impact on public audiences, deepening and advancing knowledge and understanding about important scientific concepts, and promoting continued, family-based collaborative learning experiences to expand and deepen STEM knowledge. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning.
DATE: -
TEAM MEMBERS: Michael Rosenfeld Sarah Goforth Amy Bolton
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will use a design-based research process to research and develop an innovative theatrical game that will improve visitors' understanding of complex topics requiring conceptual change. This project will research a novel experience that helps visitors engage with difficult content in informal science education venues, uses existing exhibit and collection assets in a new way, and creates a venue for visitor engagement that requires less capitalization than a full exhibition project. For the public, this project will blend best practices from exhibit development, museum theater, and facilitation with emerging theories about game-based learning to create a novel experience that deeply engages visitors with an evolution storyline and allows them to explore the museum and interact with one another in new ways. For the field, the project will examine how theatrical games can be valuable, viable experiences in museum environments and what game mechanics and supports contribute to players' conceptual thinking. While the project's games with theatrical elements will focus on evolution, the tested strategies will provide valuable information about effective approaches for informal STEM education more broadly wherever audiences exhibit major misconceptions or discomfort with scientific ideas. The project will disseminate findings through conferences and workshops, academic reports, a research-to-practice implementation guide, and a training video about best practices for engaging the public in theatrical gaming.

The project will focus on the creation and modification of a theoretical framework that describes the content, program format, and degree of facilitation necessary to create experiences that support conceptual change in visitors' thinking about evolution--and, by extension, other complex topics. The project team and advisors will collaboratively will build varying levels of facilitation and challenge into theatrical programming that connects objects and experiences across the museum to help visitors construct a story of evolution. Project research will focus on the creation of three variants of a theatrical game to test a theoretical framework that describes the game dynamics and facilitation necessary for experiences that support conceptual shifts in visitors' understanding about evolution. This work will take place in four phases, and will be conducted by researchers at the Science Museum of Minnesota with input and review through an external evaluation process. The questions guiding the research are: (1) How, and in what ways, do game design features support conceptual shifts in evolution concepts?; (2) Do player outcomes differ in each game? If so, in what ways?; (3) What other factors (player profile, collaboration, evolution beliefs) influence player outcomes? (4) What are the best practices for facilitating the games and supporting visitors' experiences? The research will contribute to the under-studied field of participatory museum theatre experiences; broaden our understanding of the roles facilitation and gameplay have in informal learning; and help exhibit and program developers make informed choices about the potential of various exhibit components and aligned programming.
DATE: -