The Wild Center will design and implement an innovative learning experience through new installations on Wild Walk, an elevated walkway that runs through the Adirondack forest. The museum will also design and lead interpretive training for staff, interns and volunteers, and draft and test interpretive programs. Exhibits will include a thirty-foot-high rope net "Spiders Web" suspended above the ground; "Squirrel Run," a series of suspended bridges that lead from the main walk; a two-story Tree House which will house multiple exhibits on wildlife and people-nature relationships; and a model Tree Snag that is 40 feet high and 12 feet in diameter. The museum aims to enhance audiences' understanding of STEM (Science, Technology, Engineering and Math) concepts through dynamic learning experiences and interactive exhibits offered through an elevated view of the forest. The learning experiences and resources will foster an appreciation of being active in nature and promote the philosophy that spending time outdoors is a valuable part of our lives.
John J. Tyler Arboretum will develop visitor programming that will provide educational opportunities in its Edible Garden Center focused on the benefits of growing and eating fresh fruits and vegetables. The center will include a food gardening exhibit that addresses urban gardening issues such as raised beds, container gardens, rooftop gardening, holistic sustainable gardening practices and technologies, and traditional vegetable gardening techniques. Cooking demonstrations, healthy eating programs, and dedicated gardening activities will allow for hands-on learning about health and sustainability. The garden will also include a play space for children, art performances and art installations to create a visitor experience that is dynamic, educational and forward-thinking.
The L.C. Bates Museum will provide 1,700 rural fourth grade students and their families museum-based STEAM (Science, Technology, Engineering, Art, and Mathematics) educational programming including integrated naturalist, astronomy, and art activities that explore Maine's environment and its solar and lunar interactions. The project will include a series of eight classroom programs, family field trips, TV programs, family and classroom self-guided educational materials, and exhibitions of project activities including student work. By bringing programs to schools and offering family activities and field trips, the museum will be able to engage an underserved, mostly low-income population that would otherwise not be able to visit the museum. The museum's programming will address teachers' needs for museum objects and interactive explorations that enhance student learning and new Common Core science curriculum objectives, while offering students engaging learning experiences and the opportunity to develop 21st century leadership skills.
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.
The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
Armory Center for the Arts will develop, deliver, and evaluate "Artful Connections with Science," an innovative new visual arts-science integrated curriculum for the fourth and fifth grade levels in the Pasadena and Los Angeles Unified School Districts. "Artful Connections with Science" will provide support to the education community at a critical juncture as California adopts the Next Generation Science Standards. It will also enable the center to build organizational capacity for the delivery of arts-integration curriculum in multiple districts, thus increasing sustainability and helping to improve lives through the power of art.
Perot Museum of Nature and Science will expand its museum-based professional development offerings for Dallas-area teachers by launching, testing, and evaluating a scalable Perot Museum STEM (Science, Technology, Engineering, and Math) Teacher Institute and Mentor Program. Participating K-12 teachers will attend a weeklong, intensive "Summer Academies at the Museum" designed to measurably improve the quality of formal science instruction in public, charter, private, and parochial schools by creating and sustaining a collaborative formal and informal STEM learning community. The museum aims to increase teachers' knowledge of science content as well as their competence, confidence, creativity, and consistency in science instruction through this program, and ultimately increase interest and engagement among their students in STEM subjects.
The Long Island Children's Museum, in partnership with the Westbury School District, will expand its Westbury STEM Partnership program to provide additional professional development and ongoing support for teachers, and experiential STEM (science, technology, engineering, and math) learning opportunities for both first- and second-grade students in their classrooms and at the museum. The program will support inquiry-based, hands-on STEM learning in a high-need school district neighboring the museum, provide professional development to teachers, bring students to the museum to experience exhibits and programs, and make the museum's education staff available to educators for mentoring and content support as they integrate new teaching strategies into their classrooms. The project will promote improved STEM teaching and student learning by supporting teachers in integrating inquiry-based teaching strategies, enriching experiential learning for students both in and out of the classroom, and strengthening local school and community partnerships.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
The Lawrence Hall of Science will implement the "Mobile Inventor's Lab," a project to extend the benefits of an ongoing outreach program into a model that can serve visitors at a variety of locations in communities underserved by local science education organizations. The museum will refine its engineering design experiences to be easily reconfigured and delivered in a variety of locations, and develop activities and kits for library and community partner staff. This project will expand the impact of the hall's educational resources and offer audiences the opportunity to interact with and learn about engineering design experiences in their own communities.
The Museum of Science and Industry (MOSI), in collaboration with the Tampa Community Development Corporation (CDC), will create a youth STEAM (science, technology, engineering, arts, and mathematics) program designed by East Tampa neighborhood participants for the neighborhood. The STEAM program will be a first of its kind in the area and will bring a continuum of experiences in STEAM fields to underserved middle and high school students, as well as volunteer participants, who come from the East Tampa neighborhood. Initial programming topics for career exploration include astronomy/cosmology and space exploration, environmental sciences, engineering, robotics, crime scene forensics, and medical explorations. The project will expand the museum's ability to create a STEAM continuum, increase interest in STEAM careers, and to increase awareness of skills necessary to be successful in STEAM careers.
This document presents an overview of the quantitative survey data findings from the SL+ Equity Pathways in Informal Science Learning project. Further qualitative analysis on some of the open response data is yet to be completed. Findings are grouped into four areas: about the individuals taking part in the survey; their definitions and understanding of equity and related terms; their current equity practice; and their practices around equity work including reading, talking with colleagues and evaluation.
This Research & Practice Agenda is a synthesis of findings from the Youth Access & Equity in Informal Science Learning (ISL) partnership, a UK-US researcher-practitioner project, funded by the Science Learning+ Initiative. Activities included a survey administered in the UK and US with 134 ISL researchers and/or practitioners; workshops with 111 participants in both the UK and US; a literature review; and a joint UK/US workshop conducted in the UK. This set of activities generated a range of data, resources and raised questions, both research questions and questions of practice, which we have