This project investigates long-term human-robot interaction outside of controlled laboratory settings to better understand how the introduction of robots and the development of socially-aware behaviors work to transform the spaces of everyday life, including how spaces are planned and managed, used, and experienced. Focusing on tour-guiding robots in two museums, the research will produce nuanced insights into the challenges and opportunities that arise as social robots are integrated into new spaces to better inform future design, planning, and decision-making. It brings together researchers from human geography, robotics, and art to think beyond disciplinary boundaries about the possible futures of human-robot co-existence, sociality, and collaboration. Broader impacts of the project will include increased accessibility and engagement at two partner museums, interdisciplinary research opportunities for both undergraduate and graduate students, a short video series about the current state of robotic technology to be offered as a free educational resource, and public art exhibitions reflecting on human-robot interactions. This project will be of interest to scholars of Science and Technology Studies, Human Robotics Interaction (HRI), and human geography as well as museum administrators, educators and the general public.
This interdisciplinary project brings together Science and Technology Studies, Human Robotics Interaction (HRI), and human geography to explore the production of social space through emerging forms of HRI. The project broadly asks: How does the deployment of social robots influence the production of social space—including the functions, meanings, practices, and experiences of particular spaces? The project is based on long-term ethnographic observation of the development and deployment of tour-guiding robots in an art museum and an earth science museum. A social roboticist will develop a socially-aware navigation system to add nuance to the robots’ socio-spatial behavior. A digital artist will produce digital representations of the interactions that take place in the museum, using the robot’s own sensor data and other forms of motion capture. A human geographer will conduct interviews with museum visitors and staff as well as ethnographic observation of the tour-guiding robots and of the roboticists as they develop the navigation system. They will produce an ethnographic analysis of the robots’ roles in the organization of the museums, everyday practices of museum staff and visitors, and the differential experiences of the museum space. The intellectual merits of the project consist of contributions at the intersections of STS, robotics, and human geography examining the value of ethnographic research for HRI, the development of socially-aware navigation systems, the value of a socio-spatial analytic for understanding emerging forms of robotics, and the role of robots within evolving digital geographies.
This project is jointly funded by the Science and Technology Studies program in SBE and Advancing Informal STEM Learning (AISL) Program in EHR.
Science communication research is dominated by Western countries. While their research provides insight into best practices, their findings cannot be generalized to developing countries. This study examined the science communication challenges encountered by scientists and science communicators from Manila, Philippines through an online survey and semi-structured, investigative interviews. Their answers revealed issues which have been echoed in other international studies. However, challenges of accessibility and local attitudes to science were magnified within the Philippine context. These
Who speaks for “citizen science” on Twitter? Which territory of citizen science have they made visible so far? This paper offers the first description of the community of users who dedicate their online social media identity to citizen science. It shows that Twitter users who identify with the term “citizen science” are mostly U.S. science professionals in environmental sciences, and rarely projects' participants. In contrast to the original concept of “citizen science”, defined as a direct relationship between scientists and lay participants, this paper makes visible a third category of
Reflecting on the practice of storytelling, this practice insight explores how collaborations between scholars and practitioners can improve storytelling for science communication outcomes with publics. The case studies presented demonstrate the benefits of collaborative storytelling for inspiring publics, promoting understanding of science, and engaging publics more deliberatively in science. The projects show how collaboration between scholars and practitioners [in storytelling] can happen across a continuum of scholarship from evaluation and action research to more critical thinking
DATE:
TEAM MEMBERS:
Michelle RiedlingerJenni MetcalfeAyelet Baram-TsabariMarta EntradasMarina JoubertLuisa Massarani
The last three decades have seen extensive reflection concerning how science communication should be modelled and understood. In this essay we propose the value of a cultural approach to science communication — one that frames it primarily as a process of meaning-making. We outline the conceptual basis for this view of culture, drawing on cultural theory to suggest that it is valuable to see science communication as one aspect of (popular) culture, as storytelling or narrative, as ritual, and as collective meaning-making. We then explore four possible ways that a cultural approach might
DATE:
TEAM MEMBERS:
Sarah DaviesMegan HalpernMaja HorstDavid KirbyBruce Lewenstein
This guide compiles lessons learned by seven Portal to the Public Network (PoPNet) sites as well as remaining challenges and recommendations for organizations planning similar efforts in the future. PoPNet sites used the Portal to the Public Guiding Framework to build relationships with local scientists, prepare them for public engagement using Portal to the Public training materials, and feature them at public programs.
With funding from the NASA Science Activation program, the Space Science Institute (SSI) launched NASA@ My Library in 2016. The vision of NASA@ My Library was to help public libraries and state library agencies increase NASA and STEM learning opportunities for library patrons throughout the U.S., including those in geographic areas and populations currently underserved in STEM education. SSI worked closely with its partners, including the American Library Association (ALA), Cornerstones of Science (CoS), the Lunar and Planetary Institute (LPI), and the Pacific Science Center’s Portal to the
Chicago Children’s Museum (CCM) closed its doors to the public in March 2020 to help stop the spread of COVID-19. Like many learning spaces, CCM needed to switch from in-person to online interactions to continue connecting with our community during the pandemic. Museum educators soon began making videos at home, building upon our best practices for interacting with guests at the museum. Here are some tips gained by staff that we hope other museum professionals can use and adapt for your online programming!
When Chicago Children’s Museum (CCM) closed in March 2020 due to the COVID-19 pandemic, the reality of a prolonged closure soon hit home. Like all of our colleague museums, we needed to find a way to remain relevant to our community and carry out important aspects of our work.
One key initiative that needed to be sustained was our National Science Foundation (NSF)-funded research-to-practice project: TALES (Tinkering and Learning Engineering Stories)1. A partnership between CCM, Loyola University Chicago, and Northwestern University, this project studies how narrative and storytelling
Informal learning environments offer a range of educational observations. Lately, many venues have adopted livestreaming and digital archiving, both as additional access for a wider offsite audience and as alternative ways to engage the onsite audience. Students can observe animals and plants from a different continent through a live camera feed, or they can watch an online recording of a science experiment even if they missed the live demonstration. However, livestreamed or archived observations remain a mostly passive experience, offering limited interactions beyond watching the videos. One way to create more active learning opportunities from these observations is to use sensors such as thermal cameras as additional streaming devices, which transmit real-time images and data that not only reveal more about what is being observed, but also allow the audience to ask deeper questions, find answers by interacting with the data, apply science knowledge in a relevant context, and become an active participant in scientific inquiry.
This project has created Telelab, a cloud platform for livestreaming and archiving interactive observations to promote citizen science. Powered by the Internet of things (IoT), Telelab allows informal science educators to present exhibits, living organisms or ecosystems through the use of sensors and actuators. Audiences both onsite and offsite can visualize biological processes in situ, such as thermoregulation, thermogenesis, metabolism, etc., or they can investigate physics and chemistry experiments by analyzing experimental data in combination with the video stream.
This work is funded by The Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments; provide multiple pathways for broadening access to and engagement in STEM learning experiences; advance innovative research on and assessment of STEM learning in informal environments; and engage the public of all ages in learning STEM in informal environments.
Pulsar: A Science Podcast is a science and technology podcast produced by the Museum of Science, Boston. The podcast has grown and expanded in recent months as the museum turned its attention to developing online resources during the coronavirus pandemic. This evaluation seeks to understand the ways the Pulsar team may improve their product in order to better suit listeners’ preferences and to expand the podcast’s reach.
This evaluation is grounded in two primary objectives: (1) describing the podcast’s current audience and (2) understanding factors that impact listeners’ engagement with
DATE:
TEAM MEMBERS:
Alia QatarnehAbigail FeldmanMason Hill
Astronomy has been an inherently visual area of science for millenia, yet a majority of its significant discoveries take place in wavelengths beyond human vision. There are many people, including those with low or no vision, who cannot participate fully in such discoveries if visual media is the primary communication mechanism. Numerous efforts have worked to address equity of accessibility to such knowledge sharing, such as through the creation of three-dimensional (3D) printed data sets. This paper describes progress made through technological and programmatic developments in tactile 3D