National Science Foundation (NSF) awarded an Informal Science Education (ISE) grant, since renamed Advancing Informal STEM Learning (AISL) to a group of institutions led by two of the University of California, Davis’s centers: the Tahoe Environmental Research Center (TERC) and the W.M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES). Additional partner institutions were the ECHO Lake Aquarium and Science Center (ECHO), Lawrence Hall of Science (LHS) at the University of California, Berkeley, and Audience Viewpoints Consulting (AVC). The summative evaluation study was
The mixed methods randomized experimental study assessed a model of engagement and education that examined the contribution of SciGirls multimedia to fifth grade girls’ experience of citizen science. The treatment group (n = 49) experienced 2 hours of SciGirls videos and games at home followed by a 2.5 hour FrogWatch USA citizen science session. The control group (n = 49) experienced the citizen science session without prior exposure to SciGirls. Data from post surveys and interviews revealed that treatment girls, compared to control girls, demonstrated significantly greater interest in their
Through the NSF Innovation Corps for Learning Program, (I-Corps L), this project will develop ways to enable the SciStarter program to extend the promise of citizen science by connecting millions of citizen scientists with scientists in need of their help through formal and informal research projects. Citizen science is a fast growing field that engages the public in scientific inquiry through data collection projects and environmental monitoring using sensors, mini spectrometers, water testing kits and other tools. A challenge for the citizen science community has been access to the tools required to collect the types of data needed in citizen science projects. SciStarter facilitates broader participation in citizen science by reducing the barrier for volunteers to identify, acquire, and use the right scientific tools and instruments for each project. This I-Corps for Learning project will develop approaches to enable SciStarter to provide a larger number of citizen scientists with easier access to required and recommended instruments needed for meaningful participation in citizen science projects.
SciStarter aims to provide a holistic solution to the needs of citizen scientists that includes projects, support, and products such as training materials and consulting. SciStarter can be a catalyst in citizen science by connecting people to opportunities to engage and in lowering barriers to public participation in scientific research while creating a hybrid academic-consumer sustainability model. A central focus of this current effort will be establishing a sustainable and scalable means of enabling citizen scientists to obtain equipment and instruments in an efficient and cost-effective manner. The project will make use of elements already in place to expand the engagement of citizen scientists in new or multiple projects, to empower citizens in the process of citizen science, and to provide a useful, scalable and sustainable solution for scientists leading citizen science research projects. The extension of SciStarter will set the stage for greater inclusion of previously marginalized groups in citizen science activities and will extend to all forms of public engagement in science.
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.
This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE:
-
TEAM MEMBERS:
David WatkinsBuyung AgusdinataChelsea SchellyRachael ShwomJenni-Louise Evans
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Eric HamiltonKatherine McMillanPriya Mohabir
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Broad Implementation project would scale up the CryptoClub Project, an afterschool and online program designed to engage middle school youth in mathematics and cryptography. The project builds on previous successful work and evaluation that is ready for scale up using a train-the-trainer model implemented through a partnership with the National Girls Collaborative. The project will train 160 new CryptoClub leaders who will then train 800 new leaders at 20 hub sites reaching 9600 students. In addition, professional development modules and webinars will continue to refresh leader skills. Other project components include an online multiplayer cryptography game, weekly challenges through social media, and digital cryptology badges for students.
The research uses a think-aloud method with students as they actually attempt to solve the cryptology problems using mathematical thinking. Three think-aloud studies will be performed during the Project. The research team will code transcripts of the interviews for evidence of the mathematical thinking intended to be addressed by each activity, as well as capturing unexpected kinds of thinking. Tasks will also be rated according to the type of knowledge elicited. A written report will include statistical analyses of the think-aloud and interview responses, interpreted in light of the overall CryptoClub goals. The findings will contribute to both future research efforts and practice. The evaluation by EDC uses a quasi-experimental design, which assesses project outcomes for trainers, leaders, students, and Internet users. EDC will also investigate the fidelity to the CryptoClub model as it is scaled up. These studies have strong potential for informing numerous other projects that are at a stage where scale up is under consideration.
As part of the Exploratorium’s Indoor Positioning System (IPS) project, we prototyped a crowd-sourced, location-tagged audio app, called Exploratorium Voices, or Open Conversation, that visitors could use on smartphones to listen to short comments from staff, experts and other visitors and to leave their own comments for others to hear. This app was developed with Roundware, an open-source framework that collects, stores, and delivers audio content, integrated with a Wi-Fi IPS that provided location data used to tag audio recordings and determine where a visitor was to play recordings left
The Northwest Passage Project (NPP) is a collaborative effort between the University of Rhode Island (URI), Inner Space Center (ISC), Graduate School of Oceanography (GSO), the film company David Clark Inc., and several other partners, including six Minority Serving Institutions (MSIs) and three informal science education institutions. The project centers on a research expedition into the Arctic's Northwest Passage, which will engage intergenerational cohorts of high school, undergraduate, and graduate students in hands-on research aboard the U.S. tall ship SSV Oliver Hazard Perry (OHP). During the expedition, a professional film crew will produce a two-hour documentary focused on the NPP's innovative model of interdisciplinary informal STEM (science, technology, engineering, and mathematics) learning and highlight the expedition's research, participants, and the sociological issues related to the changing Arctic environment. Because the Canadian Arctic is remote and costly to access, the project will maximize NSF's investment by giving broad audiences access to the science and excitement of the expedition through the documentary. In addition, this informal science learning opportunity will not only engage students with scientists in authentic research, but also train the students to deliver daily live broadcasts from sea to three well-established U.S. informal science education institutions: the Smithsonian National Museum of Natural History (NMNH), the Exploratorium, and the Alaska Sea Life Center (ASLC). The daily broadcasts will also reach the public in real time via the project's interactive website, providing the opportunity for people to post questions to the scientists and students onboard the ship. The NPP has great potential to benefit society by enhancing awareness of the changing Arctic's ecosystems and increasing science literacy. The hands-on research experiences will enhance the college readiness of the participating high school students and encourage the undergraduate students from the six partner MSIs to consider a graduate course of study and/or pursue STEM careers. The graduate students will also be more career-ready, as they gain public communication and leadership skills necessary for 21st century scientists. The Northwest Passage Project is designed to advance knowledge and understanding within the practice of informal science education, as well as in the field of Arctic science. The project goals include: increasing public awareness and understanding of the changing Arctic ecosystem; increase public understanding about Arctic research and the scientific process; increase the Informal Science Education (ISE) field's understanding of the public's learning process when engaged in live interactions with scientists and student 'science communicators'; increase the ISE field's understanding of the value of immersive science experiences and impact on students from underserved and underrepresented populations; and to build or extend the capacity of ISE institutions to make connections between polar scientists, students, journalists and the public. The NPP is creative in that it combines the engagement of students in field-based scientific research, live broadcasts from sea to ISE institutions, and the production of a full-scale documentary for public audiences. A potentially transformative component to the ISE activities involves six Minority Serving Institution partners--Florida International University; University of Illinois, Chicago; California State University, Channel Islands; Texas State University; Virginia Commonwealth University and City College of New York--whose students will have the opportunity for a life-changing experience that may tip the scale toward their interest in STEM careers. Each of these students will develop news stories, host screenings of the film at their respective campuses, and share their experiences with peers, providing visual role models for other underrepresented students, who may never have thought themselves capable of becoming a scientist or science communicator. An additional project goal is to enhance the capacity and infrastructure of the three ISE partner institutions so that they may receive live broadcasts from the Inner Space Center in the future, beyond the funding period of the project. People, Places & Design Research will conduct the project's front-end and formative evaluation; MEM & Associates will conduct the summative evaluation. Some of the key evaluation questions will be: * Have ISE and MSI institution public visitors, who view either the live broadcasts or the documentary film (or both), become more aware of the changing Arctic ecosystem and the importance of scientific research in the Arctic? * What is the relative impact of the live broadcasts compared to the finished documentary, and the strengths and weakness of the respective media in translating the on-board experience? * Does a real environmental and social context for scientific evidence stimulate audiences to become more interested in the role of science/STEM? * Have students gained leadership skills and the ability to communicate science to their peers? * Have students increased their motivation and interest in pursuing STEM careers? This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE:
-
TEAM MEMBERS:
Gail ScowcroftDavid ClarkBrice LooseDwight Coleman
On August 21, 2017, a total solar eclipse will traverse the United States from Oregon to South Carolina. Millions of Americans will witness totality, in which the Moon completely blocks the Sun, and over 500 million people across North America will experience a partial eclipse. In this project, the American Astronomical Society (AAS) will forge an umbrella organization consisting of an eclipse project manager, a centralized website of resources, and a mini-grants program to coordinate and facilitate local and national activities that will educate the public about the science of this rare event. The project will leverage this fascinating display of beauty to engage as many people as possible in the endeavor of science.
This project will involve scientists, educators, and amateur and professional eclipse observers in developing extensive plans for unique outreach activities to reach a significant fraction of the diverse U.S. population. The goal is to use the eclipse, which will generate significant media attention, to educate a broad audience about the associated science and to encourage young people from widely diverse backgrounds to pursue careers in science. Special emphasis will be placed on citizen science projects and on educational activities targeting groups that are underrepresented in STEM disciplines. A mini-grants program will be established to fund efforts specifically targeting underrepresented groups in order to increase their participation. The evaluation plan will focus on the utilization of the materials on the website and the learning gains of participants in specific activities funded by the mini-grants. All lessons learned will be collated in a publicly available formal report and will lay the groundwork for a strategic plan to fully capitalize on the next U.S.-based solar eclipse in 2024. Because this project aligns well with the objectives of multiple NSF directorates, this award is co-funded by the Division of Undergraduate Education and the Division of Research on Learning in the Directorate for Education and Human Resources; the Division of Astronomical Sciences in the Directorate for Mathematical and Physical Sciences; and the Division of Atmospheric and Geospace Sciences in the Directorate for Geosciences.
DATE:
-
TEAM MEMBERS:
Kevin MarvelAngela SpeckShadia HabbalRichard Fienberg