The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE:
-
TEAM MEMBERS:
Fred MartinDouglas PrimeMichelle Scribner-MacLeanSamuel Christy
The development and use of the Web by science-technology museums, mass media, and other informal science learning resource centers to enable remote public access to their resources and expand their educational outreach programs has grown enormously over the past decade. Similarly, many "open source" learning and education portals are rapidly growing into major free global lifelong learning resources. At the same time, U.S. student achievement in science in middle and high schools continues to be lag far behind that of students in many developed countries, and many American K-8 science teachers
This study compared grandparent-grandchild groups who experienced an informal science exhibition by visiting a museum or by visiting a website. Although intergenerational learning is often the focus of visitor research, few studies have focused specifically on grandparents as an audience. Do they have unique intergenerational needs that museums and websites are not yet supporting? Do they find museums and websites to be good places to learn alongside their grandchildren? Our findings suggested that grandparents prefer museums as locations for intergenerational learning because the museum
As mobile devices are increasingly merging into our daily lives, exhibition services are also facing innovation based on the newly available technologies. Our project addresses these new circumstances. We developed a mobile exhibition guide for the exhibition called "Mrs Brown's Big Day Out: Hamilton Women in the 1950s". That is organized by the Waikato Museum. The proposed system re-uses the TIP (Tourist Information Provider) system's framework and provides information via mobile devices to visitors on Victoria Street, which is an outdoor part of the exhibition. The information about a sight
Museums are blogging. At this writing, over 50 museum-administered blogs exist worldwide, while still more write about museums. Some blogs even focus their content specifically on the topic of museum blogging. However, museum blogging is still largely untouched in accessible professional or museological literature, save for articles on how museums can begin blogging and strategies they can employ to boost the visibility of their blog online. While useful, these articles fall under museum practice and rarely acknowledge museum theory. From a museological perspective, it is important to
The goal of this engineering education project entitled EXTRAORDINARY WOMEN ENGINEERS (EWE) is to encourage more academically prepared high school girls to consider engineering as an attractive option for post-secondary education and subsequent careers in order to increase the number of women who make up the engineering workforce. Specific project objectives are to: 1) mobilize America's more than one million engineers to reach out to educators, school counselors, and high school girls with tested messages tailored to encourage participation in engineering education and careers; 2) help high school counselors and science, math, and technology teachers to better understand the nature of engineering, the academic background needed to pursue engineering, and the career paths available in engineering; 3) equip high school counselors and teachers to share this information with students, especially girls; and 4) reach out to girls directly with messages that accurately reflect the field of engineering and will inspire girls to choose engineering. The WGBH Educational Foundation has partnered with the American Association of Engineering Societies (AAES), American Society of Civil Engineers (ASCE), and a coalition of more than 50 of the country's engineering associations, colleges, and universities to fundamentally shift the way the engineering and educational communities portray engineering. Based on a needs assessment performed in 2004, the EWE coalition embraces a communication strategy that focuses on the societal value and rewards of being an engineer, as opposed to the traditional emphasis on the process and challenges of becoming an engineer. This project represents a nationwide outreach effort that includes training opportunities for engineers; targeted Web-based and print resources for students, school counselors and teachers, and engineers; and a range of outreach and marketing activities.
DATE:
-
TEAM MEMBERS:
Julie BenyoPatrick NataleF. Suzanne Jenniches
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
SciGirls is a national dissemination project, which puts resources from the PBS science series DragonflyTV into the hands of outreach professionals at PBS stations and educators in after school programs for girls. The current project leverages PBS' nationwide network of member stations to connect the educational research community with practitioners in the field. Thus far SciGirls has trained over 100 educators and community leaders and reached 2,300 girls in grades 3 through 8. SCIGIRLS MUSEUM ADVENTURES has four objectives: 1) to provide museum educators with DragonflyTV videos that model authentic inquiry in museum settings; 2) to expand SciGirls activity guides with new museum-based activities and research-based strategies specifically for museum educators; 3) to create a set of online, streaming videos that demonstrate best practices in gender-inclusive teaching; and 4) to facilitate feedback between our participants and the research community and deepen our understanding of the most effective ways to engage girls in STEM activities. Intellectual Merit--The strength of SciGirls lies in its comprehensive multimedia approach and its foundation in the inquiry-based strategies defined in the National Science Education Standards. The videos provided in SciGirls emphasize the process of science, rather than a collection of science facts. They provide real-world models of inquiry that all girls can do. Taken together, the SciGirls resources stimulate discussion, build confidence and pave the way for girls to investigate science questions on their own. The educational strategies provided by SciGirls are based in research into gender- inclusive STEM teaching and learning, translated into strategies that can be easily used by after school educators to create successful STEM experiences for girls. Broader Impact--SCIGIRLS MUSEUM ADVENTURES will provide museum educators at ten sites with materials that can be used in their programs for years to come. The entire set of resources--streaming videos and Activity Guides--will be available on DragonflyTV's Web site at www.pbs.org. The outcomes of the project will be shared with the informal science education research community. Findings will be reported at the annual PBS National Center for Outreach Conference
Goodman Research Group, Inc. (GRG) conducted a summative evaluation of the second season of NOVA scienceNOW, the PBS series that explores cutting-edge scientific and technological innovation in real time. (GRG also served as the external evaluator for NOVA scienceNOW during Season One). In addition to the television series, WGBH-TV developed a companion website, a series of high school classroom activities, and a Science Cafe outreach initiative, designed to discuss, in non-academic environments, the latest developments in science. The Season Two evaluation included: 1) a viewer study
This Communicating Research to Public Audiences project focuses on the Reedy Glacier Antarctic research of Brenda Hall (OPP 0229034) and its relevance to the residents of and visitors to Maine. Collaborators include the University of Maine, the Maine Discovery Museum, the Acadia National Park and Cadillac Mountain Sports (an environmentally active retail company with several stores around the state). The primary deliverable is the development of an interactive software program that presents information and experiences in a two-tiered concept approach -- on the Reedy Glacier and its connection to Maine and on the process of science. The software is being configured into kiosks at the three partnering organizations, into a DVD format for informal and formal settings to be distributed at cost and onto a University of Maine Climate Change web portal currently under separate development. The project web site will provide source code for the portal design so others may use it to create portals and modules of their own. The Maine Discovery Museum intends to create additional exhibitry on the topic with resources outside this proposal, and the Acadia National Park will use the programs in teacher education workshops.
This presentation is one of three focus point presentations delivered on day one of the Citizen Science Toolkit Conference (at the Cornell Lab of Ornithology in Ithaca, New York on June 20-23, 2007) as part of the opening session titled “Citizen Science Challenges and Opportunities.” Phillips describes two interconnected citizen science project by the Cornell Lab of Ornithology, both of which are research and audience driven.
Pulse of the Planet children's science challenge includes 150 radio programs which focus on the interaction between a select group of scientists and youths 8-11, who have been chosen from a nationwide Science Challenge which encourages children to submit questions and potential experiments to scientists. Project partners include a variety of businesses (e.g., sports manufacturers such as K2), media (e.g., internet social networks such as imbee.com, TIME for Kids, Dragonfly TV, and Hispanic Communications Network) and educational partnerships (e.g. Community Science Workshops and the National Science Teacher's Association.) Underserved participants will be reached through Celebra la Ciencia science outreach programs.