The Museum of Science, Boston and Boston University received funding from the National Science Foundation to develop and implement a pilot program mentoring high school students in science research, communication, and education practices, through the lens of experimental psychology research.
The Museum of Science, Boston and Boston University received funding from the National Science Foundation to develop and implement a pilot program mentoring high school students in science research, communication, and education practices, through the lens of experimental psychology research.
The Museum of Science, Boston and Boston University received funding from the National Science Foundation to develop and implement a pilot program mentoring high school students in science research, communication, and education practices, through the lens of experimental psychology research.
The Museum of Science, Boston and Boston University received funding from the National Science Foundation to develop and implement a pilot program mentoring high school students in science research, communication, and education practices, through the lens of experimental psychology research.
DATE:
TEAM MEMBERS:
Katie ToddIan Chandler-CampbellRachel Fyler
The Museum of Science, Boston and Boston University received funding from the National Science Foundation to develop and implement a pilot program mentoring high school students in science research, communication, and education practices, through the lens of experimental psychology research
The On-the-Spot Feedback project was an iterative design and research project, which developed and tested a training model to help scientists build strategies to gather audience feedback into their outreach activities, allowing them to adjust and shift their communication and outreach on-the-spot, based on real time audience feedback.
Growth in the US Latinx population has outpaced the Latinx growth in science, technology, engineering, and math (STEM) degrees and occupation, further widening the ethnic gap in STEM. Mathematics has often identified as a bottleneck keeping many youth, especially minoritized youth, from pursuing STEM studies. Unequal opportunities to develop powerful math assets explain differences in math skills and understanding often experienced by minoritized youth. Implementing culturally responsive practices (CRP) in afterschool programs has the potential to promote math skills and motivation for youth from minoritized groups. However, extensive research is needed to understand which culturally responsive informal pedagogical practices (CIPPs) are most impactful and why. This project aims to identify and document such practices, shed light on the challenges faced by afterschool staff in implementing them, and develop training resources for afterschool staff to address these challenges. This project is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The fundamental research questions addressed by the project focus on (1) which CIPPs matter most in the context of a STEM university-community partnership engaging Latinx youth, and (2) in what context(s) and under what conditions do these CIPPs relate to positive outcomes for both youth participants and college mentor/facilitator. A third aim is to build capacity of afterschool staff for implementing CIPPs in informal STEM afterschool programs. The first two aims are addressed through a mixed-methods research study which includes quantitative surveys and qualitative in-depth interviews with five cohorts of adolescent participants, parents, and undergraduate mentors. Each year, surveys will be collected from adolescents and mentors at four time points during the year; the in-depth interviews will be collected from adolescents, parents, and mentors in the spring. In total, 840 adolescents and 210 mentors will be surveyed; and 87 adolescents, 87 parents, and 87 mentors will be interviewed. The third aim will be addressed by leveraging the research findings and the collective knowledge developed by practitioners and researchers to create a public archive containing documentation of CIPPs for informal STEM afterschool programs and training modules for afterschool staff. The team will disseminate these resources extensively with informal afterschool practitioners in California and beyond. Ultimately, this project will lead to improved outcomes for minoritized youth in informal STEM afterschool programs across the nation, and increased representation of minoritized youth in STEM pursuits.
DATE:
-
TEAM MEMBERS:
Alessandra PantanoSandra SimpkinsCynthia Sanchez Tapia
resourceprojectProfessional Development, Conferences, and Networks
Each year, millions of Americans visit science centers and museums, children’s museums, zoos, aquariums, nature centers, planetariums, and similar institutions. Recognized as trusted and popular places for educational and leisure experiences, these institutions are uniquely capable of engaging people across a spectrum of beliefs, experiences, and identities on topics related to science, technology, engineering, and mathematics (STEM), as well as addressing pressing societal problems related to science, technology, and innovation. However, the potential impacts of these institutions are largely dependent on the skills, knowledge, and abilities of the professionals working at them. Following the onset of the COVID-19 pandemic and the need to shift the nature of work, the informal STEM learning workforce was dramatically impacted. The recent period of disruption is a time for innovation. The field is well-positioned to promote new models of professional learning and development that are grounded in the values and practices of informal learning. This project will benefit local communities across the United States and society at large by advancing the capacity of science-engagement professionals to respond to societal needs, concerns, and interests more effectively through their institutions’ exhibitions, education and learning programs, and various forms of public engagement (e.g., community outreach events, supports for teachers/educators and schools). Led by the Association of Science and Technology Centers in collaboration with the Center of Science and Industry’s Center for Research and Evaluation and Oregon State University’s STEM Research Center, this work will build on the Informal STEM Learning (ISL) Professional Competency Framework developed and validated with prior National Science Foundation funding. Competency frameworks are increasingly used across many sectors to identify the suite of skills, knowledge, and capabilities necessary to be successful in a particular area of work. Given dramatic changes to the ISL workplace in the last two years, there is an even stronger potential for the Framework, particularly if newly developed supports can link the Framework to the current, emerging, and continuing needs of the workforce.
Guided by a systematic process for designing training and instructional materials, this project will first capture changes in the ways diverse informal STEM learning professionals describe, pursue, and achieve competencies to produce a revised Framework. Next, the project will collaboratively develop companion resources with diverse professionals through a series of participatory design workshops, using a sequential and iterative approach. The resources are expected to include indicators of professional competencies, self-assessments, training tools, and other types of resources that have the potential to significantly advance the professional learning (as undertaken by individuals and institutions) and the professional development capacity (as provided by institutions, associations, and other organizations) of the informal STEM learning field. Next, the project will share final products–including a refreshed website that hosts the updated Framework and newly-developed suite of tools–with professional association and network partners who can disseminate directly to the institutions and professionals who are developing and practicing these competencies. The project will gather evidence from a small number of early adopters, providing data on specific use-case scenarios. Finally, the project will document the potential impact of the Framework on the field by measuring how the Framework is perceived by informal STEM learning professionals as usable, useful, and beginning to be “in-use." Over time—and with increased use—the Framework and its companion resources hold the promise of contributing to the opening of the field to professionals with identities currently underrepresented through more transparent expectation and clearer growth pathways.
Developing a growth mindset has been identified as a key strategy for increasing youth achievement, motivation, and resiliency (Rattan et al. 2015). At its core, growth mindset describes the idea that one’s abilities can change through using new learning strategies and receiving appropriate mentoring (Dweck 2008). In contrast, a fixed mindset relates to the idea that ability is inherent and cannot be changed. We have taken up the concept of growth mindset and developed it specifically for the context of STEAM (science, technology, engineering, art, and math), a growing area of focus in both in
Fostering STEAM provided exceptional professional development that was highly rated by participants and contributed to expected participant learning outcomes. The in-person Fostering STEAM workshop reflected professional development best practices. Likewise, the online Fostering STEAM course reflected indicators of effective online continuing education and professional development.
The Fostering STEAM professional development contributed to significant self-reported growth in principles or beliefs related to the Fostering STEAM instructional approach, as well as preparedness to develop and
As STEAM has gained traction in informal education settings, it is important to support educators in learning about and developing STEAM learning experiences. We investigated what STEAM means to informal educators and how it relates to their everyday lives and identities by examining a STEAM objects activity. We found three themes in how the participants talked about the significance of the STEAM objects they shared: connection to land, historicity, and agency of materials. The STEAM objects served as boundary objects that connected communities of practice, showing the integrative nature of
Iteration is a central practice in art and science; however, it has yet to be deeply explored in STEAM learning environments. This study adopts a sociomaterial orientation (Fenwick and Edwards, 2013) to characterize the nature of iteration in one STEAM activity, an Optics Design Challenge, with informal educators. We found that iteration emerged as “microcycles” of interactions, specifically as adjustments, additions, and negotiations in both material artifacts and the narrative.