This CRPA project produced a human-like avatar exhibit for the Orlando Science Center that verbally communicates with middle and high school grade visitors, engaging them in the subjects of computer science, artificial intelligence, and engineering. Human-like characteristics include features to match the demographics of the Center's clientele and verbal communication in the English language. In addition to discussing how avatars are developed and how artificial intelligence works, the avatar image will answer questions from the visitors on selected topics, including subjects from the media models of Avatar and IBM's Watson event on Jeopardy. Considerable planning and research has gone into this project to make sure that the avatar is life-like and can engage in realistic dialog. The avatar images will resemble real individuals who have diverse demographic characteristics in order to enhance the human-computer interface. The system is designed to deal with background noise and antagonistic visitors. Evaluation at all levels (front-end, formative, and summative) will make the exhibit most effective and facilitate the goals of the project which are to inform the target audience on STEM subjects. The desire to have electronic analogs of humans has been a goal for half of a century. This project builds on prior research in this area and is one of the most sophisticated contemporary models in the field. It is anticipated that this work may contribute to future applications in education and assistance for individuals with disabilities. Moreover, engagement with the avatar may ignite curiosity among young visitors and stimulate interest in science careers.
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
The authors provide an analysis of pairs of children interacting with a multi-touch tabletop exhibit designed to help museum visitors learn about evolution and the tree of life. The exhibit’s aim is to inspire visitors with a sense of wonder at life’s diversity while providing insight into key evolutionary concepts such as common descent. The authors find that children negotiate their interaction with the exhibit in a variety of ways including reactive, articulated, and contemplated exploration. These strategies in turn influence the ways in which children make meaning through their
This research was commissioned to explore visitors’ experiences in When the Dinosaurs Were Gone (later titled "When Crocodiles Ruled", a temporary exhibition at the Science Museum of Minnesota. As a summative evaluation, the research sought to address several issues and objectives: 1. overall impressions of the exhibition — visitors’ ratings of enjoyment, interest in the information, what they liked most, and what changes they would suggest (or not want) for a traveling version of this exhibit; 2. extent of use of the exhibition — amount of time spent in the exhibition and the extent to which
DATE:
TEAM MEMBERS:
People Places & Design ResearchScience Museum of MinnesotaJolene Hart
This summative evaluation of the exhibition Robots & Us was designed to investigate how visitor audiences used and experienced this exhibition in relation to the project’s objectives and challenges. Visitors’ expectations and perceptions in relation to the project’s content goals prompted the summative evaluation to focus on specific challenges including: attitudes and perceptions about technology, connections between robots and people, appeal to a broad audience, and reactions to specific exhibits.
DATE:
TEAM MEMBERS:
Jeff HaywardJolene HartScience Museum of Minnesota
The TEAMS Collaborative received three separate rounds of funding from the National Science Foundation; Inverness Research served as the external evaluator to the project for all three rounds of funding. This summative report details the return on NSF's long-term investment in the TEAMS Collaborative. It outlines the overall contributions of the project to participating museums, individual staff at those museums, and to the larger field of informal science education institutions. It also summarizes the ways in which the TEAMS Collaborative was able to effectively capitalize on NSF's investment
Researchers at the U.C. Davis will carry out observations of museum visitors to plan for a study of how visualizations affect visitors of an Earth Sciences exhibit using 3D technology. The researchers will be able to conduct an experimental study about how much participants in an education center learn from the model of earthquakes and of a model of the Lake Tahoe basin. The researchers will conduct a quasi-experiment of a sample of 100 visitors to the center at Lake Tahoe to study their experience with visualization and learning of science. The funding for this phase of the project will include the development of audience surveys, conducting focus groups to develop types of feedback, train staff to conduct data collection, and to conduct a literature review of technology visualization.
The Milwaukee Public Museum will develop Adventures in Science: An Interactive Exhibit Gallery. This will be a 7250 sq. ft. interactive exhibit with associated public programs and materials that link the exhibit with formal education. The goal of Adventures in Science is to promote understanding of biological diversity, the forces that have change it over time, and how scientists study and affect change. The exhibit will consist of three areas. "Our Ever-Changing World" will feature "dual scene" habitat dioramas that will convey at-a-glance how environments change over time. "The Natural History Museum" will be a reconstruction of a museum laboratory and collections area to protray behind-the-scenes scientific and curatorial activities that further the study of biological diversity, ecology and systematics. An "Exploration Center: will bridge these two areas and will be designed to accommodate live presentations, group activities and additional multimedia stations for Internet and intranet access. Using interactive devices, visitors will be encouraged to make hypothesis, examine evidence, compare specimens, construction histories of biological and geological changes, and develop conclusions about the science behind biodiversity and extinction issues. Visitors should also come away with an increased understanding of the role of systematic collections in understanding biological diversity. Information on MPM research programs will be highlighted in "The Natural History Museum" section and will be updated frequently. Annual Teacher Training Institutes for pre-service and in-service teachers will present strategies for using the gallery's multimedia stations, lab areas, and Web site links. Special attention will be given to reaching new audiences including those in the inner city and people with disabilities.
DATE:
-
TEAM MEMBERS:
Allen YoungJames KellyPeter SheehanSusan-Sullivan BorkinRolf JohnsonMary Korenic
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
resourceevaluationProfessional Development, Conferences, and Networks
Children’s Discovery Museum of San Jose (CDM) contracted Randi Korn & Associates, Inc. (RK&A) to study the professional development component of Mammoth Discovery!, a NSF-funded project. The professional development part of the project convened a group of museum professionals (cohort participants) from select children’s museums to participate in several workshops, developed and conducted by CDM staff, and gatherings at a number of Association of Children’s Museums (ACM) conferences. RK&A conducted the evaluation to measure the impact of these experiences on the professional practice of cohort
DATE:
TEAM MEMBERS:
Randi Korn & Associates, Inc.Children's Discovery Museum of San Jose
This report details the findings from an exploratory research study conducted by the Research and Evaluation Department at the Museum of Science, Boston about this exhibition, which came to be known as Provocative Questions (PQ). This investigation was guided by the following questions: 1. Will visitors engage in socio-scientific argumentation in an un-facilitated exhibit space, and are they aware that they are doing so? 2. How do the un-facilitated exhibits impact visitors’ socio-scientific argumentation skills? For the exploratory research study, visitors were cued to use the exhibits and
This study investigated variables that influence the utilization of museums by African Americans. A sample of 333 African Americans from six Eastern U.S. communities were interviewed at home about their leisure activities; particularly, their use of museum-like settings. Key variables that influenced museum visits were income, education, the community in which individuals lived, childhood experiences and participation in church-related activities. Although SES, cultural differences and latent racism impacted present-day African American use/non-use of museums, historic patterns of museum use
DATE:
TEAM MEMBERS:
Institute for Learning InnovationJohn H Falk