This poster shows the development of the project Scientists for Tomorrow during the three years of its implementation: two first years under the full funding of the NSF and the third year as a no-cost extension. Also the poster describes how the project was incorporating more community centers and with it more participants through the development of the "self-sustained" mode of implementation. The poster introduces also the next step of the project - the Scientists for Tomorrow - National Alliance.
The attached document describes the results of evaluation of affective and cognitive impact of the Fusion Science Theater show model. Affective gains were measured by post-show questionnaires and cognitive gains were measured by having audience members vote for their prediction to the investigation question before and after the "lesson" of the show. Appendix includes instruments.
DATE:
TEAM MEMBERS:
Madison Area Technical CollegeDr. Joanne Cantor
This is the poster for the CCI Solar Fuels and Westside Science Club collaboration presented by Michelle Hansen and Benjamin Dickow at the 2014 AISL PI meeting in Washington DC.
DATE:
TEAM MEMBERS:
California Institute of Technology Center for Chemical InnovationMichelle Hansen
This poster was presented at the 2014 AISL PI Meeting. Led by Washington University, Making Natural Connections: An Authentic Field Research Collaboration (DRL-0739874), is a series of two field-based informal science education programs in environmental biology targeting St. Louis area teenagers. The project aims for engagement of science research institutions and career scientists in the execution of informal science education programming, bringing real and dynamic context to the science content and allowing for deep and transparent career exploration by teenage participants. Project goals
DATE:
TEAM MEMBERS:
Washington University in St. LouisSusan FlowersKim MedleyKatherine Beyer
The data collection for this project involved three audiences: (1) a post-event survey completed by participants at the 'Eight-Legged Encounters' event, (2) a club experience survey completed by middle school students in an after-school club, and (3) focus groups, observations, and end-of-course evaluations conducted with students in the BIOS 497/897 'Communicating Science through Outreach' seminar class at the University of Lincoln, Nebraska. Year two data collection was completed from September 2013 - March 2014. Appendix includes survey.
DATE:
TEAM MEMBERS:
University of Nebraska-LincolnEileen Hebets
The data collection for this project involves three audiences: (1) a post-event survey completed by participants at the 'Eight-Legged Encounters' event, (2) a club experience survey completed by middle school students in an after school club, and (3) focus groups, observations, and end-of-course evaluations conducted with students in the BIOS 497/897 'Communicating Science through Outreach' seminar class at the University of Nebraska-Lincoln. Data was collected from February to April, 2013 and the evaluation was conducted by the Bureau of Sociological Research (BOSR). Appendix contains surveys
DATE:
TEAM MEMBERS:
University of Nebraska-LincolnEileen Hebets
Who We Are: A network of informal educators, climate scientists, learning scientists and local partners across four cities, dedicated to improving local understanding of and engagement with climate change science. Mission: CUSP aims to foster a network of climate-focused organizations to implement targeted, coordinated, and concentrated educational strategies that explore local climate impacts and community-level responses. What We Do: Unite local organizations committed to addressing the impacts of climate change into collaborative network Use latest climate science and learning science research to inform program development Connect urban residents’ personal interests to larger city systems impacted by climate change, and provide residents opportunities to explore city-wide responses Deliver programs that are targeted (aimed at specific audiences), coordinated (presenting consistent and clear information about the science of climate change), and concentrated (delivered many times, through many programs) Test the hypothesis that when people encounter the same science content in multiple settings, from multiple points of view, they are more likely to understand and remember important concepts What We Offer: A Community of Practice for local organizations, including training on best practices of climate communication and education Provide local organizations with current climate science impacting their city, and latest learning science research Opportunities for city residents to explore local impacts of climate change in every day settings, at neighborhood centers, at schools, online, and at city festivals. Opportunities for city residents to engage with local organizations in community-level responses to climate change
DATE:
-
TEAM MEMBERS:
The Franklin InstituteRaluca EllisFrederic BertleySteven SnyderRadley HortonKevin Crowley
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell
The Decapoda - shrimp, lobsters, and crabs - are an economically important, diverse group of animals whose geologic history extends back 400 million years. Living representatives, numbering over 15,000 species, are global in distribution and nearly ubiquitous in oceanic and non-oceanic environments. They exert a major impact on ecosystems; understanding the dynamics of their fossil record will illuminate their historical impact on ecosystems. We will test the hypothesis that decapods are arrayed in a series of discrete evolutionary faunas; remarkably, the vast array of living and fossil decapods in diverse interrelated groups have exploited four basic body plans repeatedly. Other hypotheses to be tested are that the Decapoda have repeatedly adopted a limited number of baupläne, or generalized architectures, throughout their history; that they have experienced explosive evolutionary radiations followed by periods of no determinable change; and that they are generally resistant to mass extinction events. These hypotheses will be tested using a unique dataset compiled and assessed by the Principle Investigators: a compilation of all fossil decapod species, arrayed in a classification scheme including fossil and living taxa, with geologic and geographic ranges of all species, including a phylogeny (i.e. "family tree") for many sub-groups within the Decapoda. The dataset will be expanded to include ecological data for each taxon and will be entered into the Paleobiology Database, an NSF-supported vehicle for analyzing the fossil record. Employing its methodology, patterns of diversity and macroevolution of the decapods will be generated at levels ranging from the entire Order to species level. This will result in a comprehensive analysis of macroevolutionary patterns of this major group for the first time. Available paleoecological data derived from field studies and published records will be used to determine the effects of various environmental factors such as seafloor conditions, reef development, water depth, and temperature on morphology, extinction survivorship, and diversity. Because decapods have a remarkable range of morphological variation preservable in the fossil record, the diversity of the groups of decapods can be assessed in relation to their morphological characteristics. Defining the history of taxa with specialized morphology will permit recognition of body plans that have been exploited by different decapod groups throughout the history of the clade.
Intellectual merit. This study will provide the most comprehensive analysis of macroevolution of the Decapoda yet conducted, all based upon a unique dataset that is internally consistent by virtue of its having been developed entirely by the investigators. It will document the significance of employing a high resolution, species-level database for interpretation of diversity. The hypotheses and conclusions derived here will provide a model and the foundation for future work on Decapoda, Arthropoda, and macroevolution of well-constrained groups. It will provide a test for the efficacy of PBDB data versus a constrained dataset assessed by specialist systematists.
Broader impacts. The work will introduce undergraduate students at Kent State at Stark, an undergraduate campus, and Kent State at Kent, to research that involves paleoecological, paleogeographical, and functional morphological elements which, in turn, will be communicated to other students. Because decapods are known to virtually everyone, they form an excellent group to use to inform the public about ancient patterns of diversity and the relationship between the morphology of organisms, variations in their environmental requirements, and their adaptability to different physical conditions. This will be conveyed in a professionally constructed display which has the potential to be exhibited in museums and universities around the country. Small kits designed for use in elementary and middle schools will be available to allow students to make their own observations about the adaptations of decapods to their environment and its effect on diversity. Published papers and presentations on results of research at meetings will be prepared throughout the course of the research. Because the study of modern biodiversity is a concern of the general public, presentations to broader audiences as well as geology classes will provide a broad historical context for understanding modern patterns of diversity. Data entered into Paleobiology Database and Ohio Data Resource Commons will be openly available to other researchers and the general public. Combined, the databases will assure archival storage and public access, following a proprietary period.
This is a Broad Implementation proposal. Our goal is to create a vibrant, sustained community of practice around the established Café Scientifique New Mexico model for engaging high school teens in science, technology, engineering and math; scale-up will be accomplished via a national network of committed partners. The adult Cafe Scientifique model for engaging citizens in science has proven very effective and has been implemented widely. The interaction in a social setting with a scientist-presenter around a hot science topic is the key to the model’s success. With ISE funding, the model has been adapted by Science Education Solutions for the high school teen audience. Cafe Scientifique New Mexico, now starting its fifth year, has had documented success in providing teens with increased STEM literacy and a more realistic picture of scientists as real people leading interesting lives. Teens come to better understand the nature of science and are more likely to see the relevance of science to their lives. Scientists express strong satisfaction with the nature of our coaching and the resulting quality of their science communication. The program has been continually evaluated and improved, and is now ready for broad implementation. Intellectual Merit: Teenagers are the adult citizens and workforce of tomorrow. Teens are reaching a critical life juncture and are making choices that affect their future life style, life-long learning behaviors, and careers. Yet they are increasingly dropping out of the STEM pipeline in school. Even teens interested in STEM often know little about science and engineering careers and the nature of scientific research. Teen Cafés can play an important role in addressing these challenges. We have two major objectives: 1. Implement the Café Scientifique model of Teen Cafés in a national network of sites committed to adopting and adapting the program and validating its impacts with diverse audiences; and 2. Create a vibrant and sustainable community of practice comprised of ISE and STEM professionals interested in engaging teens in STEM through Teen Cafés. We have formed a core network of six initial partners: Southern Illinois University Edwardsville, Center for STEM Research, Education, and Outreach; The Florida Teen SciCafé Partnership; North Carolina Museum of Natural Sciences, Raleigh; Science Discovery, University of Colorado; The Pacific Science Center in Seattle; and The Missouri AfterSchool Network (MASN) – Project LIFTOF. We will add two more core partners in Year 3. The core partners will join the Teen Cafe Network in a staged fashion in years 1 - 3. Each will reach sustainability over a three-year funding period. Each node has a local area network of partners consisting of organizations that will host local Cafes; scientific organizations with potential presenters; schools and other organizations for recruiting teens; and entities capable of contributing to financial sustainability. The network will provide a structure for a dynamic, growing, and sustainable community of practice to implement the Teen Café model, in which high school teens will gain skills in scientific discourse, thought, and exploration. STEM professionals will gain improved skills for communicating with public audiences and a new perspective on their research from a broader societal perspective. ISE professionals will gain capacity to adapt, implement, test, and further disseminate the Teen Café model and increased capability for preparing STEM experts to communicate effectively with teen audiences, along with tools, resources, and expertise to help them do so. Science Education Solutions will manage the project and provide the resources to support the community of practice, while continuing Cafe Scientifique New Mexico as a ninth network node. We will stimulate intensive ongoing communication of lessons learned across the network as partners start up their Cafe programs; external observers will be able to watch the program unfold. Broader Impacts: We will build capacity for serving teens and effective communication of science in the broad ISE and STEM communities by encouraging and nurturing others wishing to start a Cafe program and join the network. We have partnered with 10 large science and science education organizations, each with its own extensive network, which will allow us to further propagate the Teen Cafe Network. They are: National Ecological Observatory Network (NEON). Nanoscale Informal Science Education Network (NISE Net), The American Institute of Physics (AIP), Science Cafés.org (to include NOVA), Science Festival Alliance, Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), Informalscience.org, Project Liftoff: Elevating Science Afterschool, ITEST Learning Resource Center, and The Center for Multiscale Modeling of Atmospheric Processes (CMMAP). Each partner will also target underserved and diverse teen audiences for their programs.