Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE:
-
TEAM MEMBERS:
Southwestern CollegeDavid BrownDavid Hecht
This portfolio contains the following reports: "Community Science Workshops: A Powerful and Feasible Model for Serving Underserved Youth. An Evaluation Brief"; "Community Science Workshops: Building a Bridge to Science for Urban Youth. A Descriptive Look at CSWs."; "What Do Community Science Workshops Do For Kids? The Benefits to Urban Youth."; and "CSWs by the Numbers: A Statistical Portrait of Community Science Workshops." Community Science Workshops are community-based non-profit programs that offer underserved youth living in low-income, high-minority neighborhoods a fun and safe way to
Our goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy. We recognize a pressing need creating more sustainable solutions for the (human) built-environment and of stabilizing economic patterns that uphold sustainable systems. to prepare citizens for the challenges of The ASCEND model is designed to encourage these societal shifts, but at the same time, it is an attempt to put theory into practice - activating educational practices aligned with research on human development and cognition. For some time now strong recommendations for apprenticeship learning have emphasized the function of legitimate peripheral participation – the possibility of which becomes more prevalent in robust communities of practice. As compared to top-down approaches (typical of formal education settings) these "learning communities" are seen as being more closely aligned with our natural propensities for learning and cognition. ASCEND represents a design-experiment -an attempt to learn how we can create and sustain opportunities for apprenticeship learning in an interdisciplinary arena at the leading edge of technical innovation. In addition, the ASCEND model introduces and examines the efficacy of “digital storytelling” as an alternative to more traditional forms of apprenticeship learning and as a means to engage and advance this and future generations in STEM. A further goal is to develop innovative measures of assessment commensurate with this new model of apprenticeship learning. Finally ASCEND explore how informal learning organizations (museums, libraries, preserves etc.) can use digital storytelling to develop community-driven programs inclusive of at-risk youth and other hard to reach audiences.
The Maker Movement is inspiring thousands of young people across the nation to tinker with and tackle problems involving design, engineering and programming. This report from the third Making Meaning Symposium takes a critical look at describing and documenting learning that takes place when young people make. The symposium brought together nearly 150 makers, funders, educational researchers, educators from K–12 and informal settings, museum and community based leaders, and policymakers. The aim of this national symposium was to craft a strategy for documenting the variety of learning and
The New York Hall of Science (NYSCI), in collaboration with O\'Reilly Media will host a two-day workshop to explore the potential for the kinds of making, designing, and engineering practices celebrated at Maker Faire to enrich science and math learning. The purpose of this workshop is to identify and aggregate successful programming strategies that increase student engagement and proficiency in STEM, with a focus on students underrepresented in STEM careers. The meeting will be organized around three main ideas: catalyzing a national Maker movement; dissemination and scaling of design principles; and assessment of impacts on STEM learning and attitudes. The convening highlights the capacity of making activities to impact student motivation, attitudes, and conceptual understanding in STEM in both informal and formal learning environments. The workshop will be held in conjunction with the World Maker Faire at NYSCI on September 18-19, 2011. The World Maker Faire is a two-day, family-friendly event that celebrates the Do-it-Yourself or DIY movement and brings together a broad community of professionals and laypersons with a common interest in technology-based creativity, tinkering, and the reuse of materials and technology. The proposed workshop extends the work of the previous Maker Faire workshop (DRL 10-46459) by identifying initiatives that bridge the Maker and STEM communities while building students' foundational STEM knowledge and engaging audiences underrepresented in STEM careers. This workshop will accommodate approximately 50 local and national scientists, engineers, learning science researchers, educators, policymakers, and philanthropists. Select participants will present detailed case studies of maker programs, design principles, assessments, and measured outcomes in STEM attitudes and learning. Key elements of successful programs and assessment strategies will be identified across the case studies in brainstorming sessions and roundtable discussions. Following the workshop, a subset of the case studies will be compiled into an edited volume, indexed by the dimensions of student learning in the National Research Council publication, "A Framework for K-12 STEM Education: Practices, Crosscutting Concepts and Core Ideas." This project uses the momentum of the popular Maker Faire movement, based in design, engineering and technology concepts, to connect to STEM education while capitalizing on the strengths of informal learning environments. The workshop provides researchers, practitioners, and policymakers with an aggregated collection of program design principles and reliable metrics for documenting changes in preK-20 STEM attitudes and learning. The edited volume has the potential to advance the understanding of how to bridge formal and informal learning environments, while also fostering research on the affective dimensions of making in diverse audiences.
San Francisco State University is collaborating with MESA of California to replicate the Mission Science Workshop (MSW) model for informal science education to establish 10 self-supporting interactive Community Science Workshops (CSW's) throughout California. The overriding theme for activities at the CSW's is to let children and parents "be" scientists as they explore through the use of interactive exhibits, hands-on building/tinkering activities and content workshops, while at the same time ensuring they learn correct science concepts. Content to be presented is from the areas of Engineering, Life Sciences, Physical Sciences, and Mathematics. The target audience is primarily African-American, Latino, and Native American children in grades K-8 and their families.
Community Science Workshops: Beginning a National Movement is an extension of a successful, NSF-funded project that created a network of community science centers in California. Green Mountain College has now taken this successful venture to a national level by working with partner organizations throughout the country to establish new Community Science Workshops (CSWs) in underserved communities. Once sites are selected, CSW directors participate in an intensive two-week training program. This is followed by visits by site mentors, annual meetings, and ongoing support through the Internet and other media, which contributes to the establishment and eventual sustainability of the centers. Each site partners with local, established museums, science centers and community-based nonprofit organizations to gain much needed assistance with exhibits and education programs. Community Science Workshops contain permanent exhibit space, a workshop area for student projects and classroom/storage space. They serve a variety of audiences through after school, family, school and summer science programs. National CSW locations include Miami, Houston, New Orleans, Boston, and Washington, D.C. A CSW program is also in development in Biloxi, MS.
Community Science Workshops: Beginning a National Movement is an extension of a successful, NSF-funded project that created a network of community science centers in California. The San Francisco State University will now take this successful venture to a national level by working with the American Association for the Advancement of Science (AAAS) and Quality Education for Minorities (QEM) to establish a new Community Science Workshop (CSW) 8-10 in underserved communities over the next four years. Once sites are selected, CSW directors participate in an intensive two-week training program. This is followed by visits by site mentors, and ongoing support through the WWW and other media, which contributes to the establishment and eventual sustainability of the centers. Each site partners with larger, established museums and science centers locally to gain much needed assistance with exhibits and education programs. Community Science Workshops contain permanent exhibit space, a workshop area for student projects and classroom/storage space. They serve a variety of audiences through after school, family, school and summer science programs. Potential locations include Arizona, Florida, Louisiana, Michigan, Montana, Nebraska, New York, Tennessee, Texas, Washington and the District of Columbia.
Chabot Space and Science Center seeks support to engage in a six-month planning process for "Imagine That!," a multi-faceted science and technology career exploration program. In partnership with the Columbia River Exhibition of History, Science & Technology (CREHST) and the American Museum of Science & Energy (AMSE), Chabot proposes to fill the gap between well-intentioned and designed programs and the programs' abilities to really influence/affect future career choices by participants. "Imagine That!" will familiarize youth with a wide range of careers in scientific and technical fields through after-school and summer programs that offer in-depth career exploration and guidance activities, hands-on experiences that complement science education in school and an introduction to role models. "Imagine That!" will also provide parents with resources to support their children as they explore potential careers in science, technology and engineering. This planning grant will enable the three major science museums, Junior Achievement and government and business partners to develop the logistics for working together on an ambitious collaborative program of national scope. "Imagine That!" has the potential for broad and significant impact. Not only would it create a national program of career exploration, it will strengthen and diversify the STEM workforce. The national impact of this project is assured by the inclusion of geographically diverse partners, regional advisory councils and a robust dissemination plan.
This award supports a workshop to be held in conjunction with the 2010 World Maker Faire being hosted at the New York Hall of Science. The purpose of the workshop is to bring together the Maker community with formal and informal science and mathematics learning experts. The Maker movement is a recent phenomenon promoted by the Maker Media division of O'Reilly Media. There are currently three U.S. and one International Maker Faires, with attendance of about 30,000 each. The Faires consist of exhibits characterized as technology-rich and innovative and developed either by the exhibitor (Do-It-Yourself or DIY) or increasingly, as collaborative exhibits (Do-It-With-Others or DIWO). Participants visiting the Faires interact directly with the developer(s) and exhibits to learn the technology and engineering skills associated with designing and building their own products. The New York Hall of Science workshop will be co-chaired by Tom Kalil, Associate Director of the White House Office of Science and Technology, and Dale Dougherty, Founder of the Maker Faires. It will have approximately 50 participants drawn from academe, business, non-profits, and state, local and federal government. Workshop attendees will observe and participate in the Maker Faire at the New York Hall of Science the day before the workshop. On the second day, attendees will then address the following questions: 1) How can the innovations of the Maker movement inform science and mathematics education?; 2) What collaborations between policy makers, education and learning science researchers, and the Maker Movement can best spur innovation in science and mathematics education?; 3) What funding opportunities are possible between the Maker community and the private, philanthropic, and government sectors for the support of transformative science and mathematics education and learning research? The workshop will result in a multimedia report that will propose answers to these questions. The report will inform the education and learning science research communities about opportunities for innovations in education and learning. The workshop is designed to broadly inform both policy and practice in STEM Education. The Maker/DIY/DIWO movement is focused on design and engineering. These processes are important in STEM disciplines. In particular, the movement has motivated thousands of individuals to voluntarily participate in building technology-based projects in a manner similar to the open source software movement. If this motivation can be broadly harnessed, it could transform STEM education through new knowledge of STEM learning science and education research. The broader impact of this workshop is situated in the large numbers of individuals already engaged in Maker/DIY/DIWO projects. If more STEM content can be married to these projects, then the impact to science learning and teaching could be substantial. Since many of the Maker Faire participants come from rural communities, there is an implicit promise that incorporating more STEM content into Faire projects could have the effect of broadening participation to an underrepresented community.
The MIT Media Laboratory, in collaboration with six museums, will develop the "Playful Invention and Exploration (PIE) Network," with the goal of engaging a broader audience in science inquiry and engineering by enabling more people to create, invent and explore with new digital technologies. PIE museums will integrate the latest MIT technologies and educational research into their ongoing public programs. The museums will organize MindFest events, modeled after a two-day event at MIT in 1999, at which youth, educators, artists, engineers, hobbyists and researchers came together to collaborate on invention projects. The PIE Network will disseminate PIE ideas and activities to educators and families nationally.
DATE:
-
TEAM MEMBERS:
Mitchel ResnickNatalie RuskBakhtiar MikhakMike PetrichKaren Wilkinson
Making Connections, a three-year design-based research study conducted by the Science Museum of Minnesota in partnership with Twin Cities' communities, is developing and studying new ways to engage a broader audience in meaningful Maker experiences. This study draws and builds on existing theoretical frameworks to examine how community engagement techniques can be used to co-design and implement culturally-relevant marketing, activities, and events focused on Making that attract families from underrepresented audiences and ultimately engage them in meaningful informal STEM learning. The research is being done in three phases: Sharing and Listening - co-design with targeted communities; Making Activities Design and Implementation; Final Analysis, Synthesis and Dissemination. The project is also exploring new approaches in museums' cross-institutional practices that can strengthen the quality of their community-engagement. In recent years, Making - a do-it-yourself, grassroots approach to designing and constructing real things through creativity, problem-solving, and tool use - has received increasing attention as a fruitful vehicle for introducing young people to the excitement of science and engineering and to career skills in these fields. Maker Faires attract hundreds and thousands of people to engage in Making activities every year, and the popularity of these events, as well as the number of museums and libraries that are beginning to provide opportunities for the public to regularly engage in these types of activities, are skyrocketing. However, Maker programs tend to draw audiences that are predominantly white, middle class, male, well educated, and strongly interested in science, despite the fact that the practices of Making are as common in more diverse communities. Making Connections has the potential to transform how children begin to cultivate a lifelong interest in engineering at a young age, which may ultimately encourage more young people of color to pursue engineering careers in the future.