This document is the final summative evaluation report written by EDC, the external evaluator of the STEM Guides project. The report concludes that the project was highly ambitious, with many dynamic and evolving pieces. It was deemed successful as a model of brokering connections between students aged 10-18 and STEM resources and opportunities in rural Maine communities. The STEM Guides program contributed to the increase in STEM awareness within each community, as well as connecting youth with interesting and relevant STEM experiences.
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden their participation in STEM fields. The goals of the project include:
Contribute to the knowledge base of effective practices regarding informal STEM education for the blind, particularly relating to the development of spatial reasoning abilities.
Educate families, blind
Char Associates conducted an evaluation of the four-year, NSF-funded project, Interpreters and Scientists Working on Our Parks (iSWOOP). The project brought interpreters and scientists together in multi-day professional development sessions at five national parks with the purpose of showcasing scientific research that usually goes unseen and unappreciated by park visitors. iSWOOP coordinated the development and delivery of digital libraries including animations, still photos, thermal and high-speed videos, and maps to give visual support to explanations of particular scientific studies. In
The materials provided in this guide are intended to introduce educators and program facilitators to concepts related to STEM identity and to help educators practice noticing and responding to the dynamics of STEM identity development in their own programs. These concepts are abstract, and we have accordingly provided a variety of materials to help make them more understandable, practical, and relevant. The tool includes (a) background reading and discussion questions to introduce STEM identity and related concepts; (b) two example scenarios from our research to allow educators to practice
Children’s storybooks are a ubiquitous learning resource, and one with huge potential to support STEM learning. They also continue to be a primary way that children learn about the world and engage in conversations with family members, even as the use of other media and technology increases. Especially before children learn to read, storybooks create the context for in-depth learning conversations with parents and other adults, which are the central drivers of STEM learning and development more broadly at this age. Although there is a body of literature highlighting the benefits of storybooks
Engineering is a critical yet understudied topic in early childhood. Previous research has shown that even young children can engage in (versions of) engineering design practices and processes that are similar to those of adult engineers and designers. In this session, we will share and discuss current research projects to explore how different in-school and out-of-school contexts and activities support 3- to 8-year-old children as they engage in engineering design. We will consider ways that the different characteristics of the activities and spaces, as well as the practices of teachers
Emerging research suggests that families are key to developing the science interests and career aspirations of youth. In order to increase the diversity and numbers of individuals choosing to pursue STEM careers, it is important to better understand the factors that influence career aspirations. The influence parents have on their children’s career aspirations comes from many factors including their science capital and family science habitus. This study examined the influence of a museum-based family STEM program geared to increase the STEM career aspirations of elementary youth on the parent
This document represents the story of Native Universe: Indigenous Voice in Science Museums and how it has unfolded at the project level, the three case study museum sites, and through partnerships between tribal communities and the three science museums. Modeled on the project itself, our research and evaluation team brings together Indigenous and conventional, western evaluation and research practices, through a collaborative partnership between the Lifelong Learning Group, based at COSI’s Center for Research and Evaluation (Columbus, OH) and Native Pathways (Laguna, NM). The results of
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences. This ITEST project aims to research the STEM career interests of late elementary and middle-school students and, based on the results of that research, build an informal education program to involve families and community partners to enhance their science knowledge, attitudes, experiences, and resources. There is an emphasis on underrepresented and low income students and their families.
The project will research and test a new model to promote the development of positive attitudes toward STEM and to increase interest in STEM careers. Phase 1 of the project will include exploratory research examining science capital and habitus for a representative sample of youth at three age ranges: 8-9, 9-10 and 11-12 years. The project will measure the access that youth have to adults who engage in STEM careers and STEM leisure activities. In phase II the project will test a model with a control group and a treatment group to enhance science capital and habitus for youth.
There is growing evidence that science capital (science-related forms of social and cultural capital) and family habitus (dispositions for science) influence STEM career decisions by youth. This study presents reliability and validity evidence for a survey of factors that influence career aspirations in science. Psychometric properties of the NextGen Scientist Survey were evaluated with 889 youth in grades 6–8. An exploratory factor analysis (EFA) found four factors (Science Expectancy Value, Science Experiences, Future Science Task Value, and Family Science Achievement Values). Using
Craft has emerged as an important reference point for human-computer interaction (HCI). To avoid a misrepresenting, all-encompassing application of craft to interaction design, this position paper first discerns craft from HCI. It develops material engagement and mediation as differentiating factors to reposition craft in relation to tangible interaction design. The aim is to clarify craft’s relation to interaction design and to open up new opportunities and questions that follow from this repositioning.
In collaboration with a wide variety of non-profit organizations (Project SYNCERE, Little Village Environmental Justice Organization, Chicago Freedom School, Chicago Botanic Garden, Friends of the Chicago River, Institute for Latino Progress), the University of Chicago-Illinois seeks to prepare 30 new science teaching fellows (TFs) while building the capacity of 10 master teaching fellows (MTFs) to be leaders in urban science education. The project will address the professional development of all participants through a three-pronged mechanism which emphasizes (a) content-specific information that focuses on Next Generation Science Standards, (b) culturally relevant practices, and (c) teacher inquiry/research. The work will be performed in partnership with the Chicago Public Schools.
Recent graduates, career changers, and in-service Master Teachers will be provided with (a) a broad range of science concentrations including biology, chemistry, earth and space science, environmental science, and physics, (b) a unique urban perspective on science education that emphasizes diverse learning assets and equity, and (c) professional development opportunities within a community of faculty, teacher-leaders, and non-profit organizations. TFs will be prepared for licensure while earning a Master's in Instructional Leadership: Science Education, learning to teach and examine their practice as it relates to teaching, and learning within specific communities. MTFs will learn to conduct practitioner research and lead teacher inquiry groups examining essential and enduring challenges in STEM teacher practice and student learning. Formative and summative evaluation will focus on analysis of both qualitative and quantitative data related to degree and licensure attainment, the various teaching practice activities (lesson plans, participant surveys, etc.), and progress in meeting the overarching project goals. In doing so, the project will advance knowledge and understanding of the role played by community-based partnerships of university faculty, school teacher-leaders, and local non-profit entities in enhancing teacher education and development, and the circumstances that promote their success. The results of this work will be presented at national meetings of the American Educational Research Association and the American Association of Colleges of Teacher Education
DATE:
-
TEAM MEMBERS:
Maria VarelasChandra JamesCarole MitchenerAixa AlfonsoDaniel Morales-Doyle