This report presents front-end evaluation findings at the North Carolina Transportation Museum. The study was conducted to assist with the formidable task of programming the 110,000-square-foot roadhouse and to provide data for researchers and exhibit designers. Front-end evaluation goals included: (1) determine if pre-existing or natural traffic flow patterns were present in the roundhouse; (2) evaluate visitor interest in proposed research topics; and (3) obtain visitor reactions, insights, attitudes and expectations concerning proposed roundhouse programming.
This is a summary of A.W. Melton's 1936 paper, "Distribution of Attention in Galleries in a Museum of Science and Industry." Melton studied the role of movement in attracting visitors by evaluating a gear-shaper located in the machine tool section of the New York Museum of Science and Industry. Melton determined that while any kind of movement attracts visitors, the overall consequences of this movement on the exhibit may not be be positive.
In this article, Annette Noschka-Roos discusses a study of a computer-supported information system (CIS) touch-screen interactive in the "New Energy Techniques" gallery at the Deutsches Museum. The objective of the study was to gather systematic data on how the medium is used by visitors. Noschka-Roos provides key findings from the study.
DATE:
TEAM MEMBERS:
Annette Noschka-RoosVisitor Studies Association
This CRPA project produced a human-like avatar exhibit for the Orlando Science Center that verbally communicates with middle and high school grade visitors, engaging them in the subjects of computer science, artificial intelligence, and engineering. Human-like characteristics include features to match the demographics of the Center's clientele and verbal communication in the English language. In addition to discussing how avatars are developed and how artificial intelligence works, the avatar image will answer questions from the visitors on selected topics, including subjects from the media models of Avatar and IBM's Watson event on Jeopardy. Considerable planning and research has gone into this project to make sure that the avatar is life-like and can engage in realistic dialog. The avatar images will resemble real individuals who have diverse demographic characteristics in order to enhance the human-computer interface. The system is designed to deal with background noise and antagonistic visitors. Evaluation at all levels (front-end, formative, and summative) will make the exhibit most effective and facilitate the goals of the project which are to inform the target audience on STEM subjects. The desire to have electronic analogs of humans has been a goal for half of a century. This project builds on prior research in this area and is one of the most sophisticated contemporary models in the field. It is anticipated that this work may contribute to future applications in education and assistance for individuals with disabilities. Moreover, engagement with the avatar may ignite curiosity among young visitors and stimulate interest in science careers.
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
This project was an early example of STEAM (Science, Technology, Engineering, Art, Math) and was produced for the 2004 BLD Studios art exhibition, Time Machines, in Columbus, OH. This project included a chair and a desk made of drawers, on top of which was a audio/video work station where visitors sat and interacted with the technology by using the headphones and listening to one tape deck for instructions and then listening to music on the other while watching the TV screen with special HyperSpeks(tm). There was also a panel of photos above the TV designed to simulate time travel. The instructions explained the purpose of the exhibit and how to use the TV to tune into various channels to pick-up a variety of video static on empty UHF frequencies. The music was designed to put the visitor into a certain frame of mind. It was futuristic sounding and created using DEMI sampling, a proprietary sampling technique also created by Marshall Barnes. The intent was to set the mood. Training Session was supposed to simulate training prospective transdimensional travelers in the cognitive exercises required to deal with the psychological rigors of time/parallel universe travel. The HyperSpeks(tm) allowed the visitors to search for various shapes in the TV static on a number of selcted channels which would resemble such cosmological constructs as black holes and wormholes. The static was live and not prerecorded and so the interaction on all levels was live and in real time. Visitors were to write their observations down on paper which was provided via a note pad and pen at the exhibit. In this way, a record of their experiences existed for subsequent visitors to review. The visitors were also told to view the photo panel, which consisted of pictures taken in 1977, but not developed until 2004. As a result, the pictures were somewhat faded and all tinted pink, however, when the visitors viewed them with the HyperSpeks(tm) they appeared not only normal color, but almost as if the scenes they depicted were views outside a window. Thus, the visitor was able to travel optically back in time and see the images the way they looked when they were originally photographed.
The Santa Maria Experiment exhibit concerns the original and successful invisibility research that initially took place in Columbus, OH in 1994 and documents the scientific principles behind how and why this research worked. It consists of two display panels filled with charts, articles and photographs and is written so that elementary children can easily read and understand the information. It also includes a video documentary for viewing that shows the research in progress and demonstrates its abilities as well as limitations. The exhibit gets its name from the fact that the largest target used for the invisibility tests in 1994, was the full scale replica of Christopher Columbus' flag ship, the Santa Maria. The ship was made to appear almost complete invisible when viewed through a special light bending material that lead investigator, Marshall Barnes, used to see if refracted light would indeed produce "mirages of invisibility". The story about this research eventually went around the world and in 2006 it was suggested that a permanent exhibit be set-up for educational purposes and be a positive draw for visitors. Housed at the Santa Maria Seeds of Change Visitor Education Center on the Scioto riverfront in downtown Columbus, OH,and officially opened on Columbus Day 2007, this is the only exhibit in the world that brings this much fantasized, as well as scientifically misunderstood subject, into accurate, scientific focus.
This summative evaluation of the exhibition Robots & Us was designed to investigate how visitor audiences used and experienced this exhibition in relation to the project’s objectives and challenges. Visitors’ expectations and perceptions in relation to the project’s content goals prompted the summative evaluation to focus on specific challenges including: attitudes and perceptions about technology, connections between robots and people, appeal to a broad audience, and reactions to specific exhibits.
DATE:
TEAM MEMBERS:
Jeff HaywardJolene HartScience Museum of Minnesota
Researchers at the U.C. Davis will carry out observations of museum visitors to plan for a study of how visualizations affect visitors of an Earth Sciences exhibit using 3D technology. The researchers will be able to conduct an experimental study about how much participants in an education center learn from the model of earthquakes and of a model of the Lake Tahoe basin. The researchers will conduct a quasi-experiment of a sample of 100 visitors to the center at Lake Tahoe to study their experience with visualization and learning of science. The funding for this phase of the project will include the development of audience surveys, conducting focus groups to develop types of feedback, train staff to conduct data collection, and to conduct a literature review of technology visualization.
Research on human–robot interaction has often ignored the human cognitive changes that might occur when humans and robots work together to solve problems. Facilitating human–robot collaboration will require understanding how the collaboration functions system-wide. The authors present detailed examples drawn from a study of children and an autonomous rover, and examine how children’s beliefs can guide the way they interact with and learn about the robot. The data suggest that better collaboration might require that robots be designed to maximize their relationship potential with specific users
Technology fills every day of our lives. At Innovation Station visitors can experience the excitement of invention as they explore technology in a whole new way. Then, they can even invent something incredible themselves. Innovation Station allows visitors to try their skills at programming a robot, building an aqueduct to bring water to a model town, or designing their own flying machines. Visitors can also step inside the Inventors Ball Room and build their own crazy contraptions to send balls whizzing, flying, and bouncing all around, or compare their own hands to the fast, precise moves of
Too Small to See is a 5,000 square-foot interactive traveling museum exhibition designed to provide hands-on nanotechnology science education to youth age 8 to 13 and adults. It debuted at Disney's Epcot and will reach over three million people during a five-year US tour. This evaluation examines the exhibition’s outcomes and impact on increasing visitors’ awareness of, interest in, engagement with, and understanding of nanoscale science, engineering, and technology. An overarching goal is to document the project’s contribution to the portfolio of federally funded Science Technology
DATE:
TEAM MEMBERS:
Douglas SpencerTina PhillipsTori AngelottiShane MurphyFred ConnerCornell University