The National Research Council's (NRC) Board on Science Education will identify an expert study committee to develop a report identifying the criteria for successful out-of-school STEM learning based on evidence from successful practice. The committee will be informed by commissioned papers and by a 2-day public workshop that explores the current evidence. The report will be written for policy-makers, funders, non-profit and private industry representatives, and other representatives from civic society. The primary goal of the report will be to help these audiences better understand and more strategically support investments in out-of-school STEM education, and to encourage partnerships that promote the linking of out-of-school STEM learning to school-based learning. This study complements the NRC work done to produce the Successful K-12 STEM Education report and builds from prior NRC studies, especially Learning Science in Informal Environments, Surrounded by Science and Education for Work and Life: Developing Transferable Knowledge and Skills in the 21st Century.
The Global Soundscapes! Big Data, Big Screens, Open Ears Project uses the new science of soundscape ecology to design a variety of informal science learning experiences that engage participants through acoustic discovery Soundscape ecology is an interdisciplinary science that studies how humans relate to place through sound and how humans influence the environment through the alteration of natural sound composition. The project includes: (1) an interface to the NSF-funded Global Sustainable Soundscapes Network, which includes 12 universities around the world; (2) sound-based learning experiences targeting middle-school students (grades 5-8), visually impaired and urban students, and the general public; and (3) professional development for informal science educators. Project educational components include: the first interactive, sound-based digital theater experience; hands-on Your Ecosystem Listening Labs (YELLS), a 1-2 day program for school classes and out-of school groups; a soundscape database that will assist researchers in developing a soundscape Big Database; and iListen, a virtual online portal for learning and discovery about soundscape. The project team includes Purdue-based researchers involved in soundscape and other ecological research; Foxfire Interactive, an award-winning educational media company; science museum partners with digital theaters; the National Audubon Society and its national network of field stations; the Perkins School for the Blind; and Multimedia Research (as the external evaluator).
The Albert Einstein Distinguished Educator Fellowship Program provides a unique professional development opportunity for K-12 educators to inform national STEM policy and improve communication between the STEM education community and national leaders. Albert Einstein Fellows spend eleven months working at the National Science Foundation, bringing extensive knowledge and classroom experience to STEM education programs. In addition, fellows are provided with an extensive program of professional development training during their cohort year. The Albert Einstein Fellows program is run by the non-profit Triangle Coalition for Science and Technology Education on behalf of the Department of Energy Office of Science. Other federal participants in the fellowship program include NASA, NOAA, and the U.S. Congress. In 2013-14, NSF will host seventeen Albert Einstein Fellows. The Albert Einstein Fellows program is designed to provide substantial STEM work experience beyond the confines of the classroom, as well as extensive training in the individual fields of science, technology, and engineering, STEM education policy, and STEM program outcomes. During the eleven-month fellowship, the Triangle Coalition provides programming that supports professional development in three broad goal areas: 1) development of leadership skills; 2) development as a STEM educator; and, 3) addressing grand challenges in STEM education. The Triangle Coalition engages a third-party evaluator to measure the efficacy of the professional development programming and the overall impact of the program. The evaluators will collect and analyze data that addresses the cumulative impact of the Albert Einstein Fellows program upon the participants and STEM programs with which they engage. The analysis will provide insight into fellows' diversity of experiences post-fellowship that can inform program analyses and research into STEM issues such as resource allocation, teacher preparedness, student interest, and minority participation in STEM. The Albert Einstein Distinguished Educator Fellows Program advances knowledge of STEM disciplines and the critical role educators play in advancing STEM learning and career development. The program increases STEM knowledge and pedagogical skills, provides an opportunity for building leadership capabilities as STEM experts, and assists educators with understanding the policy process. The fellowship equips educators to be STEM capacity-builders and problem-solvers for social, economic, and political challenges created or exacerbated by lack of STEM comprehension. The program also encourages broader diversity in STEM by recruiting in demographic sectors (race, ethnicity, location, etc.) that are historically underrepresented.
The Exploratorium, in partnership with Qualcomm, proposes to develop and test a highly accurate indoor positioning system (IPS) at full museum scale. Such a system would increase the feasibility and power of whole-visit research studies and open up opportunities for using IPS to support new and innovative informal STEM learning experiences. Within 3-5 years, museums will likely possess infrastructures capable of easily and effectively integrating IPS. The Exploratorium's project will generate early knowledge about using this technology for developing innovative programmatic strategies and for improving research and evaluation of STEM learning in museums. Program activities include developing processes for creating and updating indoor maps; testing IPS as a tool for program development and delivery; prototyping a research data management system; and the dissemination project findings.
The Georgia Tech Digital Media program is conducting a workshop and developing a website that fosters collaborations among researchers in the learning sciences community who study informal learning, practitioners in STEM-related informal learning environments (ILEs), and professional artists whose work incorporates STEM concepts. This workshop explores how the intersection of culturally-situated, arts-based learning (ABL), informal STEM learning, and digital media can be leveraged to create higher interest, motivation and learning in STEM among under-represented minorities (URMs). The workshop investigates the potential for combining culturally-situated design tools (CSDTs), contemporary art and crafts, and STEM concepts as a means to engage URM learners in STEM.
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
This grant supports a workshop focused on catalyzing STEM education R & D in Sri Lanka and in the U.S. through networking and international collaboration. The workshop is a collaboration of the US Association of Science-Technology Centers (ASTC) and the National Science Foundation of Sri Lanka. Its focus is for ASTC to share its wealth of expertise with Sri Lanka in the creation of a science center in Colombo that will engage its people in an accessible science-learning environment and provide its youth with grounding in the scientific concepts and practices. The three day workshop to be held in Colombo, Sri Lanka, will engage these experts in the discussion and co-creation of a plan for a science center to be built in Sri Lanka, and to consider how to develop an ongoing relationship between informal STEM educators in the US and STEM educators in Sri Lanka. The workshop will cover subjects critical to the development of an effective and successful science center, including: (1) Inquiry-based learning and the development of effective exhibits and programs, (2) Evaluation tools and techniques, (3) Local scientific knowledge and expertise that can influence planning and programing, (4) Developing effective outreach programs, (5) Public Engagement with science and society issues, and (6) Managing a science center. While using the development of the science center as a focus for the meeting, the workshop will also initiate discussions between STEM educators in the South Asia region and the United States, with the goal of developing a long-term relationship between STEM educators in the South Asia region and the United States. One or more of the US speakers and the invited US doctoral student will explore and identify new research questions on STEM education and the role of science centers as a new model for improving human resource capacities in STEM in developing countries. The workshop outcome should also advance future international collaborations and inform efforts to serve immigrant populations from South Asia in the US. This award is designated as a Global Venture Fund Award and is being co-funded by NSF's Office of International Science and Engineering.
Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California. Project partners include the Rueben H. Fleet Science Center and the University of California, San Diego (UCSD). The project's goals are to support teachers in the development of informal science education opportunities for English learners, partner with students in grades 7-12 to create activities and exhibits, deliver student-produced products to community members, and sustain and disseminate the activities through the development of web-based teacher tools. The teachers will work with informal science education experts, STEM professionals, and undergraduate students to develop and implement the program lessons with their 7-12 grade students. The activities and exhibits designed for community audiences will be used in the Imperial Valley Discovery Zone, slated for completion in fall 2013. Special emphasis will be placed on understanding English scientific word frames and science content specific vocabulary to help ELL students express complex scientific concepts in English. The project deliverables in this pilot project include a comprehensive teacher professional development strategy, student-developed informal science activities and exhibits, a project website, and multiple teacher resources (lesson plans, how-to guides, training materials, and social networking tools). Teachers will receive 45 hours of professional development during the summer with an additional 20 hours of support provided during the school year. UCSD's Jacob's School of Engineering will provide training on solar energy micro-grids using a micro-grid observatory to be located in Imperial Valley. English language development training will be provided by the University of California's Professional Development Institute (UCPDI) and address the role of language objectives in scientific conceptual knowledge and language development; using science and language to improve classroom questioning/discussion; and teaching academic language to English learners. The informal science education component of the training provided by the Fleet Science Center will address topics such as questioning strategies, scientific reasoning frameworks, communicating science to public audiences, and learning "high level" science content using hands-on approaches. The project design builds on research which supports an active learning approach that mirrors scientific practice and is one of the strengths of informal science learning environments. The question to be addressed by the USA Project is: "Can informal STEM activities with embedded English Language development strategies assist English learner students to increase their English language competency and their interest in STEM subjects?" The PI seeks to identify the impact that teachers have on guiding students in inquiry-based informal STEM education, evaluate the academic outcomes for students, and measure changes in community interest, understanding, and attitudes towards STEM and STEM occupations. The USA Project is designed to reach approximately 200 underserved students and will promote the participation of at least 400 additional students, parents, and other rural community members. It is anticipated that this project will result in the development of a model for teacher-led informal STEM education, increased STEM learning opportunities for the community, and the development of a network of educational institutions that helps to bridge formal and informal STEM learning and learning environments.
This proposal is for a one day workshop including researchers from multiple research disciplines (e.g. education, communication, psychology) and key stakeholders from the giant screen film industry to develop key research questions, priorities, and strategies related to giant screen cinema characteristics that impact STEM learning. The workshop would be held preceding the October, 2013 meeting of ASTC in Albuquerque, NM. There has been little research performed on the unique components of STEM giant screen films related to the role of immersion, presence, and effect on cognition. This workshop would begin with an online forum where invited participants would develop a list of questions, organize prior research, and identify relevant readings. During the workshop day at ASTC, participants would engage in roundtable exercises to develop the research program strategies (methods, collaborative communities, etc.) for the prioritized questions. The workshop outcomes include development of future research proposals and collaborative communities that will address the questions related to the impact of giant screen films and the role of immersion and presence on learning.
The National Academy of Sciences is proposing a three-day Sackler Colloquium on the Science of Science Communication to be held in September 2013. This conference, which will build upon the themes of the colloquium held in 2012, will bring together communication researchers, scientists, and science communication practitioners to foster interdisciplinary discussion and promote the understanding and use of research in confronting science communication challenges of national import. Prominent communication researchers will cover subjects such as "Belief and Attitude Formation about Science Topics," "Communicating Uncertainty," "Influences of Social Networks", and "Narratives in Science Communication" during the first two days of the conference. Concurrent workshops on four topics of national interest will comprise Day Three. The meeting will be held at the National Academy of Sciences, and will be webcast live as well as archived. The proceedings of Days 1 and 2 will be published in a special issue of the Proceedings of the National Academy of Sciences. In addition, written summaries of the research results and communication recommendations from the workshop on Day 3 will be distributed free on the National Academies website to highlight the importance of the role of research in effective science communication. Goals of the colloquium are to generate an appreciation of the power of social science research to guide more effective communication of STEM (Science, Technology, Engineering, and Mathematics) to help identify the gaps in communication research, and to promote sustained STEM communication programs. The colloquium will highlight the importance of the role of research in effective science communication, and strengthen understanding, appreciation, and collaboration between disciplines. It will also further strengthen the bridge between communication research and practice with the goal of improving the science of science communication.
This CAREER proposal focuses on the development of teachers' identities, which are operationalized as beliefs and practices, behaviors, and pedagogical knowledge. The PI uses a qualitative approach, occurring over two phases, to investigate the impact of formal-informal collaborations on identity development over time. The study is grounded in an ecological theoretical approach that incorporates a view of informal learning settings as learner-driven and unique in providing opportunities for interaction with objects during meaning-making experiences among groups of learners. The longitudinal research design includes collection of an array of data, including observations of teaching and learning activities, interviews, survey responses, and archival documents such as student work and videos of classroom experiences. The PI uses a narrative analysis and a grounded theoretical approach to generate themes about beliefs and practices around behaviors and pedagogical knowledge informed by informal science education experiences. Research findings and related educational activities inform the field's understanding of best practices of integrating informal science activities into science teacher education, including determining appropriate kinds of support for STEM teachers who learn to teach in informal learning environments (ILE). The PI is integrating research findings in the revision of existing courses and the development of new courses and experiences for both new and experienced teachers. The project addresses the need for empirical evidence of impacts of ILE experiences on professional development, and will build capacity of informal science institution and university professionals to provide effective teacher education experiences and new teacher support.
The New York Hall of Science proposes a two-pronged workshop project that will: (1) conduct a study of and develop a draft report on the topic of STEM badges including conceptualizations, rationale, systems, key contributors and challenges and opportunities for STEM-related badges; and (2) conduct a workshop drawn from a wide range of experts to provide critical feedback on the report. An advisory board will guide and evaluate the work. Learning increasingly takes place across a wide spectrum of institutions and contexts, through different platforms and environments, and is often incentivized by badge reward systems. There is a concomitant need to understand and make explicit the nature and criteria used, the kinds of accomplishments individuals are expected to realize, and the ways that badges are interpreted by conventional credentialing bodies, such as K-12 educational systems and institutions of higher education. The workshop creates an opportunity for a diverse group of individuals at the forefront of badges to inform each other's efforts. The report that is generated will be available to a broad audience of practitioners, developers and researchers involved in STEM education in both formal and informal sectors as well as to individuals involved in setting STEM education policy.