Skip to main content

Community Repository Search Results

resource research Media and Technology
If there is a peculiarity in the way of doing science and in the way of communicating science in Brazil, it is in the use of the idea of "deficit" in political and economic discourses, as well as in the discourses of socio-technical networks. Our proposal here is not to affirm or reject the existence of this deficit, but rather to understand its workings and its construction as a way of bringing about networks of interest that make use of this idea. For us, this is not an idea which is restricted to the discourse of researchers or of journalists and scientific broadcasters; there is also an
DATE:
TEAM MEMBERS: Marta Kanashiro Rafael Evangelista
resource research Informal/Formal Connections
This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students’ attitudes towards using computers and working in groups during scientific inquiry. Students’ attitudes towards technology and group work were analyzed using questionnaires. To add depth to the findings from the survey research, the role of gender was also investigated through the analysis of student conversations in the context of two activities: exploring science information on a hypertext
DATE:
TEAM MEMBERS: Jessica Goldstein Sadhana Puntambekar
resource research Media and Technology
The concern with a "digital divide" has been transformed from one defined by technological access to technological prowess--employing technologies for more empowered and generative uses such as learning and innovation. Participation in technological fluency-building activities among high school students in a community heavily involved in the technology industry was investigated in a study of 98 high school seniors enrolled in AP-level calculus. Findings indicated substantial variability in history of fluency-building experiences despite similar levels of access. More and less experienced
DATE:
TEAM MEMBERS: Brigid Barron
resource research Media and Technology
The main objective of the CONNECT project is to develop an innovative pedagogical framework that attempts to blend formal and informal learning, proposing an educational reform to science teaching. The project will create a network of museums, science centres and schools across Europe, to develop, apply and evaluate learning schemes by pointing to a future hybrid classroom that builds on the strengths of formal and informal strategies. The proposed approach will impact upon the fields of instructional technology, educational systems design and museum education. It will explore the integration
DATE:
TEAM MEMBERS: Sofoklis Sotiriou Eleni Chatzichristou Stavros Savas Nikolaos Ouzounoglou Lynn Dierking Salmi Hannu Sakari Avi Hoffstein Sherman Rosenfeld
resource project Exhibitions
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
DATE: -
TEAM MEMBERS: Harold Craighead Barbara Baird
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead
resource project Informal/Formal Connections
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE: -
TEAM MEMBERS: Travis Southworth-Neumeyer Daniel Calvert
resource project Public Programs
This project, Project PARTNERS (Parents: Allies Reinforcing Technology and Neighborhood Educators Reinforcing Science) supports parents and their children in learning the mathematics and science taught in the schools. The Bronx Educational Alliance (BEA), in collaboration with Lehman College, School District Nine, the Bronx High School Superintendency, and the Bronx Federation of High School Parent Association Presidents, provides a four-month Parent Academy twice a year. Thirty-six parents (20 elementary, 6 middle and 10 high school), from 18 Bronx schools in three K-12 corridors with which the BEA Resource/Outreach Center for Parents currently works, participate in each Academy, reaching 360 over five years. Project PARTNERS goals are to: 1) increase student achievement in 18 Corridor Schools through meaningful parental support; 2) provide parent training in Math, Science and Technology and enable parents to understand the New Standards; 3) develop skills to reinforce their children's learning at home; and 4) model how to effectively learn in science-rich informal educational institutions. Parents meet on Saturdays twice a month for six hours. On one Saturday they team with a teacher and child to visit a science rich institution. On the other Saturday they learn to use computer software programs which support MST, and math concepts through games and manipulatives. Incentives for parents include learning computer skills and stipends of $300 upon completion. The BEA Academies coordinate with the BUSI and District's Family Math and Family Science workshops.
DATE: -
TEAM MEMBERS: Herminio Martinez Marietta Saravia-Shore
resource project Public Programs
Understanding the Science Connected to Technology (USCT) targets information technology (IT) experiences in a comprehensive training program and professional support system for students and teachers in science, technology, engineering and mathematics (STEM). Participants have opportunities to assume leadership roles as citizen volunteers within the context of science and technology in an international watershed basin. Training includes collection, analysis, interpretation and dissemination of scientific data. BROADER IMPACTS: Building on a student volunteer monitoring program called River Watch, the USCT project enables student scientists to conduct surface water quality monitoring activities, analyze data and disseminate results to enhance local decision-making capacity. The project incorporates state and national education standards and has the potential to reach 173 school jurisdictions and 270,000 students. USCT will directly impact 81 teachers, 758 students and 18 citizen volunteers. The USCT project provides direct scientist mentor linkages for each participating school. This linkage provides a lasting process for life-long learning and an understanding of how IT and STEM subject matter is applied by resource professionals. Broader impacts include accredited coursework for teachers and students, specialized training congruent with the "No Child Left Behind Act of 2001," and building partnerships with Native American schools. INTELLECTUAL MERIT: The USCT project is designed to refocus thinking from static content inside a textbook to a process of learning that includes IT and STEM content. The USCT engages students (the next generation of decision makers) in discovery of science and technology and expands education beyond current paradigms and political jurisdictions.
DATE: -
TEAM MEMBERS: Charles Fritz Gerald VanAmburg
resource project Public Programs
This comprehensive ITEST project would provide sixty middle and high school teachers with an introduction to Geographic Information System (GIS) and Global Positioning System (GPS) technologies. The project, which brings together a leadership team of educators, science researchers and experts in resource management, is based at the University of Maryland Center for Environmental Science Appalachian Laboratory, a research facility that studies stream and forest ecosystems. The program will focus on environmental applications in which teachers use probes to investigate the properties of local forest and stream ecosystems. Teachers will apply their technology experiences to creating standards based lessons aligned with local curricula. The teacher participants will be recruited from rural, underserved Appalachian communities in western Maryland and northern West Virginia. Local students will be recruited to participate in a four-day summer session that includes field-testing the proposed lessons and learning about career opportunities in information technology.
DATE: -
TEAM MEMBERS: Cathlyn Merrit Davis Philip Townsend