Skip to main content

Community Repository Search Results

resource research Media and Technology
When it comes to STEM education, the nation’s K–12 public schools cannot do it all. The nature of 21st century proficiency in science, technology, engineering, and mathematics is too complex for any single institution. The good news is that schools do not have to do it alone. Museums, zoos, nature centers, aquariums, and planetariums are among the several thousand informal science institutions in the United States that regularly engage young people in observing, learning, and using STEM knowledge and skills. Providing a richness of resources unavailable in any classroom, informal science
DATE:
TEAM MEMBERS: Community for Advancing Discovery Research in Education (CADRE)
resource research Public Programs
Cultures develop when people find ways to play, make, and share. This report describes how human cultures can be characterised by their similarities rather than their differences, and emphasises the importance of recognising playfulness and creativity to develop societies prepared to accommodate the rapid changes associated with technology and globalisation.
DATE:
TEAM MEMBERS: LEGO Foundation David Gauntlett Bo Stjerne Thompson
resource evaluation Media and Technology
This evaluation reports on the Mission: Solar System project, a 2-year project funded by NASA. The goal of the Mission: Solar System was to create a collection of resources that integrates digital media with hands-on science and engineering activities to support kids’ exploration in formal and informal education settings. Our goal in creating the resources were: For youth: (1) Provide opportunities to use science, technology, engineering, and math to solve challenges related to exploring our solar system, (2) Build and hone critical thinking, problem-solving, and design process skills, (3)
DATE:
TEAM MEMBERS: WGBH Educational Foundation Sonja Latimore Christine Paulsen
resource project Media and Technology
The University of Massachusetts Lowell and Machine Science Inc. propose to develop and to design an on-line learning system that enables schools and community centers to support IT-intensive engineering design programs for students in grades 7 to 12. The Internet Community of Design Engineers (iCODE) incorporates step-by-step design plans for IT-intensive, computer-controlled projects, on-line tools for programming microcontrollers, resources to facilitate on-line mentoring by university students and IT professionals, forums for sharing project ideas and engaging in collaborative troubleshooting, and tools for creating web-based project portfolios. The iCODE system will serve more than 175 students from Boston and Lowell over a three-year period. Each participating student attends 25 weekly after-school sessions, two career events, two design exhibitions/competitions, and a week-long summer camp on a University of Massachusetts campus in Boston or Lowell. Throughout the year, students have opportunities to engage in IT-intensive, hands-on activities, using microcontroller kits that have been developed and classroom-tested by University of Massachusetts-Lowell and Machine Science, Inc. About one-third of the participants stay involved for two years, with a small group returning for all three years. One main component for this project is the Handy Cricket which is a microcontroller kit that can be used for sensing, control, data collection, and automation. Programmed in Logo, the Handy Cricket provides an introduction to microcontroller-based projects, suitable for students in grades 7 to 9. Machine Science offers more advanced kits, where students build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science offers more advanced kits, which challenge students to build electronic circuits from their basic components and then write microcontroller code in the C programming language. Machine Science's kits are intended for students in grades 9 to 12. Microcontroller technology is an unseen but pervasive part of everyday life, integrated into virtually all automobiles, home appliances, and electronic devices. Since microcontroller projects result in physical creations, they provide an engaging context for students to develop design and programming skills. Moreover, these projects foster abilities that are critical for success in IT careers, requiring creativity, analytical thinking, and teamwork-not just basic IT skills.
DATE: -
TEAM MEMBERS: Fred Martin Douglas Prime Michelle Scribner-MacLean Samuel Christy
resource evaluation Media and Technology
Internet Community of Design Engineers (iCODE) program, which took an innovative approach to structuring self-directed learning –– using a collaborative on-line environment to facilitate hands-on activities, was a three year program led by the University of Massachusetts Lowell and Machine Science Inc., Cambridge. The overall objective of this program, which involved after-school and summer sessions and was funded by NSF’’s Innovative Technology Experiences for Students and Teachers (ITEST) Program, was to increase the likelihood that participating middle school and high school students will
DATE:
TEAM MEMBERS: Rucha Londhe Colleen Manning Rachel Schechter Laura Houseman Irene Goodman
resource research Media and Technology
The NRC Framework for K – 12 Science Education (2012) lists five major ideas that are essential to the design of assessments and learning environments: 1) limited number of core ideas of science, 2) cross-cutting concepts, 3) engaging students in scientific and engineering practices, 4) building integrated understanding as a developmental process, and 5) the coupling of scientific ideas and scientific and engineering practices to develop integrated understanding. What implications do these major ideas have for assessment in informal science setting? This paper will discuss each of these ideas
DATE:
TEAM MEMBERS: Joseph Krajcik
resource research Public Programs
This article from "The Atlantic" describes ways that teachers are integrating hands-on and experiential STEM learning into the classroom, which include collaboration with informal learning environments through creative field trips.
DATE:
TEAM MEMBERS: Alexandra Ossola
resource research Public Programs
The Universally Designed Museum Programming project was envisioned as a way to create public programs that are more inclusive of people with disabilities. We used the concepts of universal design and Universal Design for Learning as well as our prior experiences with these topics in exhibition design and nanotechnology programming as a foundation for our work. Through this project, we gained insight into building a community of interest, facilitating a charrette in an inclusive way, using universal design guidelines to develop programs, and measuring the effectiveness of our process.
DATE:
TEAM MEMBERS: Juli Goss Christine Reich Susan Stoessel Stephanie Iacovelli
resource evaluation Exhibitions
In 2013 and 2014, the Museum of Science (MOS) partnered with Dr. Rob Wood’s lab at Harvard University’s School of Engineering and Applied Sciences (SEAS) to create an exhibition about Wood’s Robotic Bees (RoboBees) project. The Microrobotics Takes Flight exhibition (referred to in the original grant as the RoboBees exhibition) consists of three interactive components and an introductory section. The three interactive components are modeled on the three different engineering teams working on the RoboBees project: the Brain, the Body, and the Colony teams. The purpose of the evaluation was
DATE:
TEAM MEMBERS: Museum of Science, Boston Elizabeth Kollmann
resource project Public Programs
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
DATE: -
resource project Media and Technology
This Science Learning+ Planning Project will develop a prototype assessment tool (based on a mobile technology platform) to map STEM learning experiences across different learning ecologies (e.g. science centers, mass media, home environment) and to develop research questions and designs for a Phase 2 Science Learning+ proposal. The tool will focus on the impact of the learning ecologies on knowledge, interest, identity and reasoning rather than emphasize learning in a specific content area. The proposing team will develop and conduct a small scale usability study during the planning period, which will inform what is proposed in the Phase 2 research. A key focus of the planning period will be to identify and develop the theoretical constructs (i.e., outcomes) to be measured by the prototype App. As a starting point, the project will start with four of the six strands identified in Learning Science in Informal Environments (National Research Council, Bell et al., 2009): (1) interest triggered by a STEM experience; (2) understanding scientific knowledge; (3) engaging in scientific reasoning; and (4) identifying with the scientific enterprise. Discussion among the project partners during the planning process will revolve around how these strands should be measured in the Phase 2 research across ecologies. The measurement tool will assess the goal(s) that people set as they engage in STEM learning within each ecology and will measure the individuals' duration and level of engagement. The project will strive to utilize measures that: (1) are nonobtrusive; (2) are embedded in STEM experiences; (3) can be used across ecologies; (4) can be scaled for other ecologies than the ones examined in Phase 2 research; and (5) will be easy to use by researchers and practitioners.
DATE: -
TEAM MEMBERS: Bradley Morris John Dunlosky Great Lakes Science Center University of Limerick IdeaStream (UK) Irish Independent newspaper
resource project Media and Technology
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE: -
TEAM MEMBERS: James Diamond New York City Hive Learning Network MOUSE DigitalMe Katherine McMillan