'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities. This project builds on three years of FSWs which demonstrate improvements in participants' science interest, knowledge, and self-efficacy and tests the model for scale, breadth, and depth. The project partners include the Viterbi School of Engineering at the University of Southern California, the Albert Nerken Engineering Department at the Cooper Union, the Los Angeles Museum of Natural History, and the New York Hall of Science. The content emphasis is physics and engineering and includes topics such as aerodynamics, animal locomotion, automotive engineering, biomechanics, computer architecture, optics, sensors, and transformers. The project targets underserved youth in grades 1-5 in Los Angeles and New York, their parents, and engineering professionals. The design is grounded in motivation theory and is intended to foster participants' intrinsic motivation and self-direction while the comprehensive design takes into account the cultural, social, and intellectual needs of diverse families. The science activities are provided in a series of Family Science Workshops which take place in afterschool programs in eight partner schools in Los Angeles and at the New York Hall of Science in New York City. The FSWs are taught by undergraduate and graduate engineering students with support from practicing engineers who serve as mentors. The primary project deliverable is a five-year longitudinal evaluation designed to assess (1) the impact of intensive training for engineering professionals who deliver family science activities in community settings and (2) families' interest in and understanding of science. Additional project deliverables include a 16-week training program for engineering professionals, 20 physics-based workshops and lesson plans, Family Science Workshops (40 in LA and 5 in NY), a Parent Leadership Program and social networking site, and 5 science training videos. This project will reach nearly one thousand students, parents, and student engineers. The multi-method evaluation will be conducted by the Center for Children and Technology at the Education Development Center. The evaluation questions are as follows: Are activities such as recruitment, training, and FSWs aligned with the project's goals? What is the impact on families' interest in and understanding of science? What is the impact on engineers' communication skills and perspectives about their work? Is the project scalable and able to produce effective technology tools and develop long-term partnerships with schools? Stage 1 begins with the creation of a logic model by stakeholders and the collection of baseline data on families' STEM experiences and knowledge. Stage 2 includes the collection of formative evaluation data over four years on recruitment, training, co-teaching by informal educators, curriculum development, FSWs, and Parent Leadership Program implementation. Finally, a summative evaluation addresses how well the project met the goals associated with improving families' understanding of science, family involvement, social networking, longitudinal impact, and scalability. A comprehensive dissemination plan extends the project's broader impacts in the museum, engineering, evaluation, and education professional communities through publications, conference presentations, as well as web 2.0 tools such as blogs, YouTube, an online social networking forum for parents, and websites. 'Be a Scientist!' advances the field through the development and evaluation of a model for sustained STEM learning experiences that helps informal science education organizations broaden participation, foster collaborations between universities and informal science education organizations, increase STEM-based social capital in underserved communities, identify factors that develop sustained interest in STEM, and empower parents to co-invest and sustain a STEM program in their communities.
This project is intended to develop a model for STEM education through local libraries. There are several unique features in this endeavor. The model is being aimed at rural libraries and adult residents that are geographically remote from typical venues such as museums, zoos, and science centers. According to the 2000 census, there are 50 million individuals in this designation and the size of the group is increasing and becoming more diverse. Efforts to impact diverse audiences who are economically disadvantaged will be part of the plan. In many rural locations there are few community venues, but libraries are often present. The American Library Association and the Association Rural and Small Libraries have begun the reinvention of these libraries so they can become more attuned to the communities in which they are apart. Thus, this project is an effort to find new ways of communicating STEM concepts to a reasonably large underserved group. The design is to derive a "unit of knowledge enhancement" (some portion of Climate Change, for example) through a hybrid combination of book-club and scientific cafe further augmented with videos and web materials. Another part of the design is to enhance the base STEM knowledge of library staff and to associate the knowledge unit with an individual who has the specific STEM topic knowledge for a specific unit. Considerable effort shall be expended in developing the models for staff knowledge enhancement with a progressive number of librarians in training from 8 to 20 to 135. To build the content library model, five units of knowledge will be devised and circulated to participating libraries. Evaluation of the project includes front end, formative and summative by the Goodman Research Group. In addition to the "units of knowledge enhancement," the major results will be the model on how best to relate and educate citizens in rural environments and how to educate the library staff.
WaterBotics is the underwater robotics curriculum and program that is being disseminated to four regions through a National Science Foundation grant, in collaboration with national and state partners. Its goal is to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. The curriculum, which can be used either in traditional classroom settings or in after-school and summer-camp situations, is problem-based, requiring teams of students to work together to design, build, test, and redesign underwater robots, or “bots” made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges.
DATE:
-
TEAM MEMBERS:
Stevens Institute of TechnologyMercedes McKayPatricia Holahan
NASA Now: Using Current Data, Planetarium Technology and Youth Career Development to Connect People to the Universe uses live interpretation and new planetarium technology to increase awareness, knowledge and understanding of NASA missions and STEM careers among schoolchildren, teens and the general public. Pacific Science Center seeks to achieve two primary goals through this project. The first goal is to create and deliver live planetarium shows both on- and off-site to schoolchildren and the general public that showcase NASA missions and data, as well as careers in physics, astronomy, aerospace engineering and related fields. The second goal is to engage underrepresented high school students through a long-term youth development program focused on Earth and space science that provides first-hand knowledge of science and careers within the NASA enterprise along with corresponding educational pathways. Over the course of this project Pacific Science Center will develop four new live planetarium shows that will be modified for use in an outreach setting. All of these shows (for both on- and off-site delivery) will be evaluated to determine the impact of the program on various audiences. In addition, the project will provide an understanding of the impact that an in-depth youth development program can have on high school students.
Mission to Mars engages 6th-8th grade students in the science, engineering and careers related to Mars exploration. The program is led by the Museum of Science and Industry, Chicago, and includes as partners Challenger Learning Centers in Woodstock, IL, Normal IL and three NASA Centers (Jet Propulsion Laboratory, Marshall Space Flight Center, and Johnson Space Center). The project aims to:
Link, via videoconference, urban and rural middle school students from low income communities in an exploration of space science
Develop and launch programs that showcase NASA Center research
Enrich middle school curricula and promote learning about NASA’s space missions with experiences that inspire youth to pursue in NASA-related STEM careers.
Programs and products produced include:
3 videoconference program scenarios that highlight research being conducted at NASA Centers
Pre- and post-event curriculum materials designed for middle school classrooms
Teacher professional development workshops
Communication support for NASA professionals
iPad apps utilized during the program
Since the program launched five years ago, Mission to Mars has served 7,676 students. MSI seeks to provide opportunities for all learners, and works to remove barriers to participation in high-quality science learning experiences. Mission to Mars allows MSI to engage more Chicago Public Schools (where 86% of students are economically disadvantaged) in real and relevant science experiences that may lead to STEM careers.
As MSI’s CP4SMP grant comes to an end, the Museum has committed to continued delivery of the program through 2 Mission to Mars Learning Labs, offered to 6-8th grade school groups visiting on field trips. Live videoconferencing with JPL and Johnson will occur during roughly half of the sessions. Our Challenger Learning Center partners will integrate Mission to Mars activities, materials and iPad apps into their own Mars-themed programs. Together these efforts extend the transformative hands-on science experiences developed under the Mission to Mars grant to a whole new audience of middle school students and teachers.
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE:
-
TEAM MEMBERS:
Southwestern CollegeDavid BrownDavid Hecht
The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
CENTC's (Center for Enabling New Technologies Through Catalysis) outreach is focused on partnerships with science centers. Initially we worked with the Pacific Science Center (PSC) to train our students in effective communication of science concepts to public audiences. Later we developed a short-term exhibit, Chemist - Catalysts for Change in the Portal to Current Research space. As part of the CCI/AISL partnership program, we partnered with Liberty Science Center to create an activity on a multi-touch media table, "Molecule Magic." We are currently developing another exhibit with PSC.
In this full-scale research and development project, Oregon State University (OSU), Oregon Sea Grant (OSG) and the Hatfield Marine Science Center Visitors Center (HMSCVC) is designing, developing, implementing, researching and evaluating a cyberlaboratory in a museum setting. The cyberlaboratory will provide three earth and marine science learning experiences with research and evaluation interwoven with visitor experiences. The research platform will focus on: 1) a climate change exhibit that will enable research on identity, values and opinion; 2) a wave tank exhibit that will enable research on group dynamics and problem solving in interactive engineering challenges; and 3) remote sensing exhibits that will enable research on visitor interactions through the use of real data and simulations. This project will provide the informal science educaton community with a suite of tools to evaluate learning experiences with emerging technologies using an iterative process. The team will also make available to the informal science community their answers to the following research questions: For the climate change exhibit, "To what extent does customizing content delivery based on real-time visitor input promote learning?" For the wave tank exhibit, "To what extent do opportunities to reflect on and share experiences promote STEM reasoning processes at a build-and-test exhibit?" For the data-sensing exhibit, "Can visitors' abilities to explain or use visualizations be improved by shaping their visual searches of images?" Mixed-methods using interviews, surveys, behavioral instruments, and participant observations will be used to evaluate the overall program. Approximately 60-100 informal science education professionals will discuss and test the viability of the exhibit's evaluation tools. More than 150,000 visitors, along with community members and local middle and high school students, will have the opportunity to participate in the learning experiences at the HMSCVC. This work contributes to the fields of cyberlearning and informal science education. This project provides the informal science education field with important knowledge about learning, customized content delivery and evaluation tools that are used in informal science settings.
The NEES network is comprised of a central management office (NEEScomm) located at Purdue University, and 14 geographically distributed earthquake and tsunami research facilities. We are considered to be a Large Facility within the Engineering division. We have been responsible for the coordination of centralized education, outreach and training activities at each of theses research facilities plus assessment of these activities. We have conducted a very successful REU program for the past 5 years. Additionally we maintain a repository of education modules and learning objects available on our website.
DATE:
-
TEAM MEMBERS:
Barbara Fossum
resourceprojectProfessional Development, Conferences, and Networks
Based on nearly two decades of museum programming for low-income Hispanic and African American girls at the Miami Science Museum, this extension service project employs a train-the-trainers approach to build a network of museum-based Extension Agents dedicated to helping informal science educators attract the interest and support the persistence of minority girls, grades 6-12, currently underrepresented in STEM studies. Led by the Miami Science Museum, the collaboration brings together an experienced group of institutions with representation from the informal science, gender research, and engineering communities. In addition to the Museum, the Expert Project Team consists of key staff from the Association of Science-Technology Centers (ASTC), and SECME Inc. (formerly the Southeastern Consortium of Minorities in Engineering), who serve as the conduit for the participation of minority engineering professional organizations. An advisory/research panel of researchers in gender in STEM, whose work complements those of the project investigators, works closely with the Expert Project Team to prepare Extension Agents from ten geographically dispersed museums, who in turn provide a range of training and peer mentoring services to the practitioner community of informal science educators in science-rich institutions nationwide. Participating museums include: Connecticut Science Center (Hartford, CT), New York Hall of Science (New York, NY), Maryland Science Center (Baltimore, MD), Miami Science Museum (Miami, FL), COSI (Columbus, OH), St. Louis Science Center (St. Louis, MO), Louisville Science Center (Louisville, KY), Sci-Port (Shreveport, LA), Explora (Albuquerque, NM), and California Academy of Sciences (San Francisco, CA).
DATE:
-
TEAM MEMBERS:
Judy BrownLaura Huerta MigasMichele Williams