RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE:
-
TEAM MEMBERS:
resourceresearchMuseum and Science Center Exhibits
The impetus behind this effort was to create a platform for initial support to TEE professionals who may have a blind and low-vision (BLV) student in their courses. Specific examples, instructions, and applications for many of the commonly-used tools and techniques are included here as part of this overall effort to teach TEE concepts through socially relevant contexts by adapting older methods to facilitate new opportunities in our school systems for BLV youth.
DATE:
TEAM MEMBERS:
Scott Bartholomew Wade GoodridgeNatalie ShaheenAnne Cunningham
The data collection procedure and process is one of the most critical components in a research study that affects the findings. Problems in data collection may directly influence the findings, and consequently, may lead to questionable inferences. Despite the challenges in data collection, this study provides insights for STEM education researchers and practitioners on effective data collection, in order to ensure that the data is useful for answering questions posed by research. Our engineering education research study was a part of a three-year, NSF funded project implemented in the Midwest
DATE:
TEAM MEMBERS:
Ibrahim YeterAnastasia Marie RynearsonHoda EhsanAnnwesa DasguptaBarbara FagundesMuhsin MeneskeMonica Cardella
Given the growth of technology in the 21st century and the growing demands for computer science skills, computational thinking has been increasingly included in K-12 STEM (Science, Technology, Engineering and Mathematics) education. Computational thinking (CT) is relevant to integrated STEM and has many common practices with other STEM disciplines. Previous studies have shown synergies between CT and engineering learning. In addition, many researchers believe that the more children are exposed to CT learning experiences, the stronger their programming abilities will be. As programming is a
Computational Thinking (CT) is a relatively new educational focus and a clear need for learners as a 21st century skill. This proposal tackles this challenging new area for young learners, an area greatly in need of research and learning materials. The Principal Investigators will develop and implement integrated STEM+C museum exhibits and integrate CT in their existing engineering design based PictureSTEM curriculum for K-2 students. They will also pilot assessments of the CT components of the PictureSTEM curriculum. This work will make a unique contribution to the available STEM+C learning materials and assessments. There are few such materials for the kindergarten to second grade (K-2) population they will work with. They will research the effects of the curriculum and the exhibits with a mixed methods approach. First, they will collect observational data and conduct case studies to discover the important elements of an integrated STEM+C experience in both the formal in-school setting with the curriculum and in the informal out-of-school setting with families interacting with the museum exhibits. This work will provide a novel way to understand the important question of how in- and out-of-school experiences contribute to the development of STEM and CT thinking and learning. Finally, they will collect data from all participants to discover the ways that their activities lead to increases in STEM+C knowledge and interest.
The Principal Investigators will build on an integrated STEM curriculum by integrating CT and develop integrated museum exhibits. They base both activities on engineering design implemented through challenge based programming activities. They will research and/or develop assessments of both STEM+C integrated thinking and CT. Their research strategy combines Design Based Research and quantitative assessment of the effectiveness of the materials for learning CT. In the first two years of their study, they will engage in iterations on the design of the curriculum and the exhibits based on observation and case-study data. There will be 16 cases that draw from each grade level and involve data collection for the case student in both schools and museums. They will also use this work to illuminate what integrated STEM+C thinking and learning looks like across formal and informal learning environments. Based in some part on what they discover in this first phase, they will conduct the quantitative assessments with all (or at least most) students participating in the study
This poster, which was presented at the Association of Science and Technology Centers Annual Conference on October 22, 2017, compares and contrasts evaluation findings across components of the Beyond Spaceship Earth project at The Children's Museum of Indianapolis. The project focuses on educating families and students about life and work aboard the International Space Station and generating interest in STEM topics and careers. Project components reviewed include an exhibit, a space object theater, and workshop-style programs focused on engineering and robotics for both families and school
Puppet interviews can be helpful for getting feedback from young children in informal learning environments like libraries, museums, or afterschool programs. While puppets are a standby for interviewing children in clinical settings and are being used more frequently in some areas of qualitative research, they tend to be under-utilized in informal learning environments - natural settings for puppets because of their connections with play (Epstein et al., 2008). Our team developed a puppet interview protocol for the Gradient research project (Gender Research on Adult-child Discussion in
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California.
In October 2005, the National Science Foundation brought members of its nanoscale science and engineering education (NSEE) projects to Arlington, VA for a 2-day workshop to explore the status of on-going efforts and to forge collaborations at the national level that would facilitate future efforts. NSF currently funds NSEE projects through the Division of Elementary, Secondary, and Informal Education (ESIE), the Directorate for Engineering as part of the Nanoscale Science and Engineering Centers (NSEC), National Nanotechnology Infrastructure Network (NNIN), the Network for Computational
Stennis Space Center (SSC) Office of Education and Visitors Center provided relevant education activities and experiences for teachers, students, and the general public. Activities included partnerships with INFINITY Science Center, 4-H of Mississippi, the Boys & Girls Club of America, development and delivery of educator professional development workshops that meet national curriculum standards; inquiry-based activities that emphasized the International Space Station, robotics, aeronautics, and propulsion testing; and development and installation of an interactive exhibit at the Infinity Science Center. The opening of the Infinity Science Center at Stennis Space Center in April 2012 allowed a new opportunity for SSC to partner and expand NASA’s outreach. A commercial-grade playground was professionally installed at the Infinity Science Center, along with OSHA-approved safety matting. The goal of the project was to utilize a commercially available playground and add graphics and quiz-based activities modifications enabling young visitors to INFINITY at NASA Stennis Space Center, the official visitor center for Stennis Space Center, to have an interactive, yet educational, experience.
Curious Scientific Investigators (CSI): Flight Adventures immerses children and families in science, technology, engineering, and math (STEM) disciplines. Launched in February 2012, the project supports NASA’s Aeronautics Research Mission Directorate (ARMD), focusing on “innovative ideas to convey the fundamentals of flight, flight technology, and NASA’s role in aeronautics.” The project’s audience includes youth ages 6-18 and the Museum’s more than 1 million annual visitors of all ages. The project’s lead agency, The Children’s Museum of Indianapolis (Museum), developed and implemented the project in Indianapolis in partnership with the Academy of Model Aeronautics and NASA Dryden Flight Research Center. The project’s goals focus on inspiring children and families to develop an interest in STEM concepts and learn about NASA’s role in science and aeronautics research and the evolution of flight, and on engaging and educating them through inquiry-based programs that facilitate understanding of STEM concepts and knowledge and NASA’s contributions to flight. Centered on an original Multimedia Planetarium Show on flight, Flight Adventures, the Museum designed several components, all of which complement the show and the messages it conveys. Among these components are an exhibit area composed of a movable wind tunnel, a display of models, low- and high-tech interactives; a Unit of Study; a TV show, Wings Over Indiana; a website; and a variety of educational and family programs.
DATE:
-
TEAM MEMBERS:
Jennifer Pace-RobinsonGordon Schimmel
The Mars Exploration Exhibit is a new public exhibition designed to provide experiential learning opportunities for students, educators and the public while inspiring greater excitement about space science. The exhibit emphasizes the importance of STEM education and careers through practical application and inquiry-based learning. Space Center Houston, the official visitor center of Johnson Space Center, is creating the new Mars landscape simulation in partnership with the Houston Independent School District and University of Houston Clear Lake. The exhibit will offer interactive science education activities that will be delivered through distance learning and onsite instruction at Space Center Houston. Utilizing research-based practices in both formal and informal learning environments, the project will help to attract and retain students in science, technology, engineering and mathematics. It will also foster life-long learning and enthusiasm toward the promise of space science and innovation. This unique exhibit will enable students and Space Center Houston’s more than 800,000 annual visitors to increase their knowledge of Earth science and apply their learning to the Mars environment. The exhibit will also highlight the role NASA missions serve in scientific innovation. The project will build the capacity of the Greater Houston community and school-based organizations to engage girls, minorities and other underrepresented students in STEM learning. It will offer in-depth science education for low-performing and gifted/talented students, ultimately bridging achievement gaps, increasing student performance and cultivating greater interest in science. Project outcomes will include: a 1,500-square-foot Mars landscape exhibition; interactive video presentations highlighting water recovery and other environmental processes; a standards-based learning curriculum aligned with Texas Essential Knowledge and Skills (TEKS ) and National Science Standards; and a menu of K-12 experiential learning activities focused on water, air, renewable energy and other critical science topics.
DATE:
-
TEAM MEMBERS:
Janet BrownMelanie JohnsonPaul SpanaMeg Naumann