As part of its overall effort to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program, seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. In alignment with these aims, the STEM + Digital Literacies (STEM+L) project will investigate science fiction as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in environmental and human health content and socio-scientific issues. This work is particularly novel, as the current knowledge base is limited, and largely addresses the high school level. Therefore, the results of the proposed effort could yield important findings regarding the feasibility of this activity as an effective platform for science learning and engagement for younger students. As such, STEM+L would not only advance knowledge in the field but would also contribute to a growing AISL portfolio on digital literacy and learning.
STEM+L is an early stage Innovations in Development project that will engage thirty middle school students in out of school time experiences. Over a twenty-four-week period, students will work collaboratively in groups in-person and online with their peers and field experts to design, develop, and produce STEM content rich, multimedia science fictions. The in-person learning experiences will take place on the University of Miami campus during the summer and academic year. Culminating activities include student presentations online and at a local Science Fiction Festival. The research component will employ an iterative, design-based approach. Four research questions will be explored: (a) How do students learn science concepts and multimodal digital literacies through participating in the STEM+L Academy? (b) How do students change their views in STEM related subject matter and in pursuing STEM related careers? (c) How do students participate in the STEM+L Academy? (d) How do we best support students' participation and learning of STEM+L in face-to-face and online environments? Data collection methods include video records, student-generated artifacts, online surveys, embedded assessments, interviews, and multimodal reflections. Comparative case analysis and a mixed methods approach will be employed. A rigorous evaluation will be conducted by a critical external review board. Inclusive and innovative dissemination strategies will ensure that the results of the research and program reach a broad range of audiences including both informal and formal STEM and literacy educators and researchers, learning scientists, local communities, and policy makers through national and international conference presentations, journal publications, Web2.0 resources, and community outreach activities.
Thanks, on the one hand, to the extraordinary availability of colossal textual archives and, on the other hand, to advances in computational possibilities, today the social scientist has at their disposal an extraordinary laboratory, made of millions of interacting subjects and billions of texts. An unprecedented, yet challenging, opportunity for science. How to test, corroborate models? How to control, interpret and validate Big Data? What is the role of theory in the universe of patterns and statistical correlations? In this article, we will show some general characteristics of the use of
Computational social science represents an interdisciplinary approach to the study of reality based on advanced computer tools. From economics to political science, from journalism to sociology, digital approaches and techniques for the analysis and management of large quantities of data have now been adopted in several disciplines. The papers in this JCOM commentary focus on the use of such approaches and techniques in the research on science communication. As the papers point out, the most significant advantages of a computational approach in this sector include the chance to open up a range
There is a gap between the discipline of economics and the public it is supposedly about and for. This gap is reminiscent of the divide that led to movements for the public understanding of and public engagement with the natural sciences. It is a gap in knowledge, trust, and opinions, but most of all it is a gap in engagement. In this paper we ask: What do we need to think about — and what do we need to do — in order to bring economics and its public into closer dialogue? At stake is engaged, critical democracy. We turn to the fields of public understanding of science and science studies for
While science communication has become increasingly professionalised, philosophers have been far less active in, and reflective about, how we talk to the public. In thinking about the relationship between the ‘public intellectual’ and science communication, however, philosophy has some important contributions to make, despite the differences of content and disciplinary approach. What, then, can both these professions learn from each other about how to engage with the public - and the risks that this might involve?
Child Trends is a nonprofit organization focused on improving the lives of children and their families by conducting research and sharing the resulting knowledge with practitioners and the public. In this project, Child Trends will conduct research and development to launch a Child Trends News Service aimed at providing news reports that feature social science child-centric research. The resulting work is designed to improve outcomes for at-risk children, particularly Latinos, the largest and fastest-growing minority group among U.S. children. Working with a professional news syndication company, the Child Trends News Service will produce engaging reports for key news media outlets that feature the latest actionable social science research related to behaviors that help mitigate negative child outcomes associated with poverty, lack of education, violence, among other challenges. Child Trends will draw attention to the reports through social media and outreach to stakeholders. By airing these reports on local television news programs in English and Spanish, millions of people will have greater access to this information. This is early R&D work to demonstrate that local television stations will air these stories and to examine the audience impact—how does accessing this social science research through preferred media channels influence news audiences’ knowledge and attitudes toward specific social science research? The study will also delve deeper to better understand how news might, or might not, motivate behavioral change. The study will provide valuable lessons to the informal science education and the STEM communication science field.
The overarching aim of this project is to use commercial news to reach populations, especially Latinos, who have historically been underrepresented in science, technology, engineering and math (STEM) education and careers. The goals of the project are to:
* Leverage mass media news outlets to effectively communicate developments in social science research on child well-being and development to Latino audiences.
* Advance the field of informal STEM learning by exploring how the public interacts with actionable social science child research.
* Expand the reach and application of the news products through strategic collaborations with provider organizations serving at-risk Latino families; the child research and STEM fields; and other organizations working on Latino family issues.
Activities include the development and formative testing of the news service, the qualitative and quantitative testing of the news service's impact on audiences, and evaluation of the implementation of the project's components. The quantitative research, using a control group and treatment group, will work to establish preliminary evidence that the Child Trends News Service will result in changes in viewers' knowledge, attitudes, and intent to adopt behaviors related to child-centric social science research. The Child Trends' project team will be informed by an Advisory Board and Technical Working Group as well by working closely with Abriendo Puertas, the largest U.S. parenting education program for low-income Latino parents. Child Trends will partner with Ivanhoe Broadcast News to produce and distribute the materials. Group I&I Consultancy will evaluate the project. In year-two, Child Trends will produce a research brief on lessons learned and research outcome measures. The proposed research and development will be conducted over a two-year period; findings will inform ongoing service and additional research.
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. In this project, the primary goal of Geo-literacy Education in Micronesia is to demonstrate the potential for effective intergenerational, informal learning and development of geo-literacy through an Informal STEM Learning Team (ISLT) model for Pacific island communities. This will be accomplished by means of a suite of six informal learning modules that blend local/Indigenous approaches, Western STEM knowledge systems, and active learning. This project will be implemented across 12 select communities in the Republic of Palau, the Federated States of Micronesia - which consists of the four States of Chuuk, Kosrae, Pohnpei, and Yap - and the Republic of the Marshall Islands. Jointly, these entities are referred to as the Freely Associated States (FAS). Geo-literacy refers to combining both local knowledge and Western STEM into a synthesized understanding of the world as a set of interconnected, dynamic physical, biological, and social systems, and using this integrated knowledge to make informed decisions. Applications include natural resource management, conservation, and disaster risk reduction. The project will: (1) demonstrate that the recruitment and development of an ISLT model is an effective method of engaging communities in geo-literacy activities; (2) increase geo-literacy knowledge and advocacy skills of ISLT participants; (3) produce and disseminate geo-literacy educational materials and resources (e.g., place-based teaching guides, geospatial data systems, educational apps, 2-D and 3-D models, and digital maps); and (4) provide evidence that FAS residents use these geo-literacy educational materials and resources to positively influence decision-making.
DATE:
-
TEAM MEMBERS:
Corrin BarrosKoh Ming WeiDanko TabrosiEmerson Odango
The “Impressions from a Lost World” website and related public programs will tell the story of the 19th century discovery of dinosaur tracks along the Connecticut River Valley in Massachusetts and Connecticut. The significance of these fossils extended far beyond the emerging scientific community, as they exerted a profound effect upon American arts, religion, and culture that reverberates down to the present day. The website will use stories of real people to engage visitors to think about relationships between science and religion, amateur vs. professional scientific pursuits and the role of specialization, participation of women in science, and the impact of new scientific ideas on American culture. Website visitors will draw connections of these important humanities themes to current issues. Accompanying public programs will attract diverse audiences and build interest in the website.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This media and research project will inform adult audiences about the discoveries of NSF funded Social, Behavioral, and Economic (SBE) scientists that are dramatically re-shaping fields as diverse as economics, marketing, medicine and government. Four primetime PBS specials hosted by science reporter, Miles O'Brien, will be produced featuring leading SBE scientists and vetted for inclusion by a panel of expert advisors including Baruch Fischhoff of Carnegie Mellon and Robert Kurzban of the University of Pennsylvania. A key innovation in the project is a participatory research strategy that will enable the public to take part directly in scientific behavioral research and discover what their participation has revealed about their own lives. Built around YouTube features, Facebook, and online games it will build on the public's interest in learning about themselves and others via social media supported by scientific research. The project collaborators include the media company, Oregon Public Broadcasting, and researchers at Carnegie Mellon, University of Pennsylvania, Yale University, and Chapman University. This project is unique in its strategy for combining broadcast television programs focusing on Social, Behavioral, and Economics research with a participatory research component that engages audiences in scientific studies that are personally relevant. It will fill an important niche in the informal learning research literature and has the potential to impact media practice that continues to evolve incorporating new online social media tools. RMC will conduct formative evaluation to help inform the project deliverables, a summative evaluation of the project, and an experimental research study in Year 3 of the project. The research study is based on the hypothesis that those participants assigned to watch the entire television series and engage in all participatory research activities will experience the greatest gains in STEM interest and engagement as compared to those who only have limited exposure. Research participants will be randomly assigned to the control group (no services) or one of the three treatment conditions: view TV only; engage in participatory website only; or both. Pre-tests and posttests and statistical tools will be used to compare changes. Sub-studies will examine dosage levels and effectiveness in engaging those who have not previously been interested in STEM.
In concert with the overall strategy of the Advancing Informal STEM Learning (AISL) program to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, Principal Investigators from Oregon State University, University of Idaho, and University of Texas at Dallas, will study a range of data in online social networks to identify evidence of the long-term impact of informal STEM education. Tracking informal learners over time to understand the impact of informal learning experiences has been a longstanding, daunting, and elusive challenge. Now, with massive amounts of data being shared and stored online, education researchers have an unprecedented opportunity to study such data and apply data analytics and visualization technologies to identify the long-term, cascading effects of informal STEM learning. Research findings will inform the design and development of a data-analysis tool for use by education practitioners to improve STEM learning experiences online, through television and film, and at informal education institutions. An independent external critical review board of learning scientists, computer scientists, engineers, informal STEM education practitioners, participating partners, broadcast media professionals, and policymakers, will ensure a robust evaluation of the research and effectiveness and utility of the data analysis tool to improve practice. A summary report for the field will be written on the scientific and practical reliability and validity of the research and data-analysis model, and the value of the work for audiences beyond informal STEM education practitioners and policymakers. The research is contemporaneously relevant, advancing innovative use of data-mining and data-analysis processes to better understand how informal learners communicate STEM learning experiences and interact with STEM content over time, across a range of social networks. Investigators will research: 1) whether learners who engage in informal STEM education experiences further their learning through discussions and sharing of information in social media networks, 2) which types of data are present in social media that are relevant for understanding the cascading impacts of learning over time, and 3) how learning may evolve independently within shared social networks, which, if discovered, could provide a predictive computational model with implications for significant impact across both formal and informal education. Investigators will employ existing and modified data crawlers to search for key terms and phrases, assess spikes and deformations in posts, queries, and blogs, and experiment with their test data to find which types or configurations of keywords or search terms deliver the most reliable and accurate results. A variety of formats will be explored to test various strategies with participating partners and practitioners. Data will be visualized to represent the following dimensions of learning: a) Interest/Affect, b) Recommendations, c) Understanding/Knowledge-Seeking, and d) Deeper Engagement.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will study why (or why not) young career adults, aged 18-35 engage with the PBS NewsHour science content via broadcast and/or online avenues to advance their STEM knowledge and skills. This age group has shifted away from viewing traditional broadcast news media and increasingly looks to social media channels for science content. Multiple layers of STEM digital content delivered across multiple platforms (including social media) will be used to identify the attributes that engage and motivate these 18-35 year olds. Deliverables include 12 broadcast segments each year with STEM research coverage and a range of transmedia efforts (e.g. additional formats distributed via Instagram, Vine, YouTube, etc.) for testing with the target audience. A complementary component of the project will be an apprenticeship program in which each year five college age students from journalism schools join the professional reporters at the NewsHour to produce STEM content using new and innovative strategies engage to 18-35 year olds. The PBS NewsHour broadcast is currently viewed by 1.4 million adults each night and the website has 2.6 million unique visitors each month. The research will attempt to define the learning ecologies of 18-35 year olds using psychographic profiles and case studies to illustrate the range of science learners including those in underrepresented groups. The first research component uses a quantitative approach to assess the reaction of the early career adults to the 12 STEM broadcast segments in their original form and after repackaging for social media. A control group audience will watch the original broadcast of each STEM segment and respond to an online questionnaire that will establish how viewers use and/or pass on STEM content and to whom. The test audience will view the content that has been repackaged and presented on a different media platform responding to the same online questionnaire and allowing comparisons of the two groups. The second research component will focus on the college-age journalism apprentices and use participatory action research. The apprentices will collect data about their experiences and reflect on their contributions to STEM reporting. The third research component will be an ethnographic study of the post-production and editorial teams at the PBS NewsHour using focus groups to elicit feedback and evaluate their metacognitive thinking about how to produce stories for early career adults. Data will be collected and analyzed from three groups: early career adults 18-35 years of age; journalism apprentices; and the PBS NewsHour editorial teams. Overall the research will provide new knowledge about producing and distributing digital STEM media that engages and impacts early career adults.
A recent report by the Association for Computing Machinery estimates that by decade's end, half of all STEM jobs in the United States will be in computing. Yet, the participation of women and underrepresented groups in post-secondary computer science programs remains discouragingly and persistently low. One of the most important findings from research in computer science education is the degree to which informal experiences with computers (at many ages and in many settings) shape young people's trajectories through high school and into undergraduate degree programs. Just as early language and mathematics literacy begins at home and is reinforced throughout childhood through a variety of experiences both in school and out, for reasons of diversity and competency, formal experiences with computational literacy alone are insufficient for developing the next generation of scientists, engineers, and citizens. Thus, this CAREER program of research seeks to contribute to a conceptual and design framework to rethink computational literacy in informal environments in an effort to engage a broad and diverse audience. It builds on the concept of cultural forms to understand existing computational literacy practices across a variety of learning settings and to contribute innovative technology designs. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds new approaches to and evidence-based understanding of the design and development of STEM learning in these settings. This CAREER program of research seeks to understand the role of cultural forms in informal computational learning experiences and to develop a theoretically grounded approach for designing such experiences for youth. This work starts from the premise that new forms of computational literacy will be born from existing cultural forms of literacy and numeracy (i.e., for mathematical literacy there are forms like counting songs -- "10 little ducks went out to play"). Many of these forms play out in homes between parents and children, in schools between teachers and students, and in all sorts of other place between friends and siblings. This program of study is a three-phased design and development effort focused on key research questions that include understanding (1) how cultural forms can help shape audience experiences in informal learning environments; (2) how different cultural forms interact with youth's identity-related needs and motivations; and (3) how new types of computational literacy experiences based on these forms can be created. Each phase includes inductive research that attempts to understand computational literacy as it exists in the world and a design phase guided by concrete learning objectives that address specific aspects of computational literacy. Data collection strategies will include naturalist observation, semi-structured, and in-depth interviews, and learning assessments; outcome measures will center on voluntary engagement, motivation, and persistence around the learning experiences. The contexts for research and design will be museums, homes, and afterschool programs. This research builds on a decade of experience by the PI in designing and studying computational literacy experiences across a range of learning settings including museums, homes, out-of-school programs, and classrooms. Engaging a broad and diverse audience in the future of STEM computing fields is an urgent priority of the US education system, both in schools and beyond. This project would complement substantial existing efforts to promote in-school computational literacy and, if successful, help bring about a more representative, computationally empowered citizenry. The integrated education plan supports the training and mentoring of graduate and undergraduate students in emerging research methods at the intersection of the learning sciences, computer science, and human-computer interaction. This work will also develop publically available learning experiences potentially impacting thousands of youth. These experiences will be available in museums, on the Web, and through App stores.