Skip to main content

Community Repository Search Results

resource project Media and Technology
Moving Beyond Earth Programming: “STEM in 30” Webcasts. The Smithsonian’s National Air and Space Museum (NASM) will develop nine “STEM in 30” webcasts which will be made available to teachers and students in grades 5-8 classrooms across the country. The primary goal of this program is to increase interest and engagement in STEM for students. Formative and summative evaluations will assess the outcomes for the program, which include the following:

Increased interest in STEM and STEM careers, Increased understanding of science, technology, engineering and mathematics (STEM), Increased awareness and importance of current and future human space exploration, and Increased learning in the content areas.

This series of live 30-minute webcasts from the National Air and Space Museum and partner sites focus on STEM subjects that integrate all four areas. The webcasts will feature NASA and NASM curators, scientists, and educators exploring STEM subjects using museum and NASA collections, galleries, and activities. During the 30-minute broadcasts, students will engage with museum experts through experiments and activities, ask the experts questions, and answer interactive poll questions. After the live broadcasts, NASM will also archive the webcasts in an interactive “STEM in 30” Gallery.
DATE: -
TEAM MEMBERS: Roger Launius
resource project Public Programs
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
DATE: -
TEAM MEMBERS: Ann McMahon
resource project Public Programs
The Balboa Park Cultural Partnership, in collaboration with several informal science education and other cultural and business organizations in San Diego, Chicago, and Worcester, MA are implementing a research and development project that investigates a range of possible approaches for stimulating the development of 21st Century creativity skills and innovative processes at the interface between informal STEM learning and methods for creative thinking. The goal of the research is to advance understanding of the potential impacts of creative thinking methods on the public's understanding of and engagement with STEM, with a focus on 21st Century workforce skills of teens and adults. The goal of the project's development activities is to experiment with a variety of "innovation incubator" models in cities around the country. Modeled on business "incubators" or "accelerators" that are designed to foster and accelerate innovation and creativity, these STEM incubators generate collaborations of different professionals and the public around STEM education and other STEM-related topics of local interest that can be explored with the help of creative learning methodologies such as innovative methods to generate creative ideas, ideas for transforming one STEM idea to others, drawing on visual and graphical ideas, improvisation, narrative writing, and the process of using innovative visual displays of information for creating visual roadmaps. Hosting the project's incubators are the Balboa Park Cultural Partnership (San Diego), the Museum of Science and Industry (Chicago) and the EcoTarium (Worcester, MA). National partners are the Association of Science-Technology Centers, the American Association for the Advancement of Science, and the Americans for the Arts. Activities will include: the formation and collaborative processes of three incubator sites, a research study, the development of a creative thinking curriculum infused into science education, professional development based on the curriculum, public engagement events and exhibits, a project website and tools for social networking, and project evaluation. A national advisory council includes professionals in education, science, creativity, and business.
DATE: -
resource project Public Programs
Portal to the Public: Expanding the National Network (PoP: ENN) is implementing around the county the successful NSF-funded Portal to the Public model in which researchers are trained to communicate and interact with the general public at informal science education (ISE) institutions about the research that they are conducting. The project, which follows on a thorough evaluation of the model at eight sites and current implementation at an additional fifteen sites, will incorporate twenty new ISE sites into the growing network, provide training and mentorship to ISE professionals on the use and adaptation of the PoP implementation manual and toolkits, and develop an enhanced network website that will serve as a communication and innovation hub. The work is responsive to the needs and activities of ISE organizations which continue to expand their missions beyond presenting to the public established science, technology, engineering and math (STEM) and are working to become places where visitors can also experience the process and promise of current research via face-to-face interactions with researchers. The project is expanding both the kind and number of institutions involved around the country and is facilitating their capacity to develop a knowledge base, share experiences and best practices.
DATE: -
resource project Public Programs
During middle school, many young people disengage from and consequently do not achieve in school-based STEM subjects. This phenomenon is more pronounced among young people in low-income communities than elsewhere. Many summer, out-of-school STEM programs are designed to offer young people opportunities to engage in hands-on, inquiry-based learning that promote interest and engagement in STEM. Research on the effect of these types of programs is limited, however. This research project seeks to fill this gap by identifying and studying practices that promote interest and engagement in STEM-related topics. The central goal of the summer STEM Interest and Engagement Study is to identify instructional practices associated with cultivating and sustaining young people's interest and engagement in out-of-school STEM summer learning programs for middle school youth. The project is based on a model of change developed from existing theory and empirical research on the cultivation of youths' interest and engagement in STEM. The project is a descriptive study that will apply multiple data collection and analytic methods, including the Experience Sampling Method (ESM), to determine instructional practices and the resulting interest, engagement, and perceptions of youth as they participate in STEM activities. In addition, survey data provided by program participants will allow the researchers to account for individual differences in preexisting interest and background factors, such as gender and ethnicity, and to measure changes in dispositions toward STEM. By better understanding these connections, practitioners can better understand how the design of their programs may influence the outcome of the participants' experience, including their education and career decisions.
DATE: -
TEAM MEMBERS: Deborah Moroney Neil Naftzger Lee Shumow Jennifer Schmidt
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create works. Increasingly, maker spaces and maker technologies provide extended learning opportunities for school-aged young people. In such environments participants engage in many forms of communication where individuals and groups of people are focused on different projects simultaneously. The research conducted in this project will address an important need of those engaged in the making movement: evidence leading to a better understanding of how participants in maker spaces engage with science, technology, engineering and mathematics (STEM) as they create and produce physical products of personal and social value. Specifically, this research will generate new knowledge regarding how participants: pose and solve problems; identify, organize and integrate information from different sources; integrate information of different kinds (visual, quantitative, and verbal); and share ideas, knowledge and work with others. To understand and support STEM literacies involved in making, the investigators will study a number of different informal learning sites that self-identify as maker spaces and serve different-aged participants. The project will use ethnographic and design research techniques in three cycles of qualitative research. In Cycle One, the researchers will investigate two adult-oriented maker spaces in order to generate case studies and develop theories about how more experienced adult makers use the spaces and to create case studies of adult maker spaces, and to develop methodological techniques for understanding literacy in maker spaces. In Cycle Two, the study will expand into two out-of-school time youth-oriented maker spaces, building two new case studies and initiating design-based research activities. In Cycle Three, the team will further apply their developing theories and findings, through rapid iterative design-based research, to interventions that support participants' science literacy and making practices in two maker spaces that exist in schools. Through peer-reviewed publications, briefs, conference presentations, presence on websites of local and national maker organizations, project findings will be widely shared with organizations and individuals that are engaged in broadening the base of U.S. science and mathematics professionals for an innovation economy.
DATE: -
resource project Exhibitions
The project "Microetching of the Human Brain" endeavors to create the most comprehensive illustration of the human brain that has ever existed. Investigators will utilize reflective microetching, a process combining mathematics and optics to create an art piece that evolves based on the position of the viewer. Microetching allows the depiction of very complex brain activity at incredibly fine detail. The final piece will be a wall-sized piece of fine art experienced by a diverse population of thousands daily at the Franklin Institute in Philadelphia. Additionally, this project is an educational opportunity for undergraduate students through direct involvement in the creation of the piece. As this project spans many scientific and artistic disciplines, students will be given an opportunity to learn about fields apart from their own, to broaden their skill set, and to learn how to communicate scientific concepts effectively. This project is a collaboration between neuroscientists, engineers, physicists, and artists to address the question of whether art can be used in the dissemination of scientific understanding to new audiences in a way that gives a visceral sense of the underlying concepts. The human brain is massively complex and challenging to portray clearly. Conveying a sense of its complexity through art may inspire an interest in the brain's scientific content and inspire a new generation of neuroscientists. To produce a piece of fine art capable of sufficient detail to depict the brain at near full complexity, the piece will be executed by a technique called reflective microetching. Microetching is a high-resolution lithographic process that patterns a microtopography of periodic ridges into the surface. These ridges are engineered to reflect a point-source illumination toward a viewer when standing at a specific angle relative to the painting. Similar to darkfield microscopy, this can yield incredibly fine detail. Additionally, the angular dependence of the light adds an extra dimension that can be used to convey time, depth, or motion as the viewer walks past. The piece will feature neurons, glia, vasculature, white and gray matter, and reflectively animated circuit dynamics between areas of the brain corresponding to neural processes involved in visual self-recognition. This will infuse the piece with additional meaning, as the circuits activated within viewers' brains will be the same that are depicted in the artwork.
DATE: -
TEAM MEMBERS: Brian Edwards Gregory Dunn
resource project Media and Technology
The National Science Teachers Association (NSTA), the Association of Science-Technology Centers (ASTC) and their research/evaluation partner, David Heil and Associates (DHA), will conduct front-end research to develop, pilot, and evaluate (formatively and summatively) a peer-reviewed journal and associated multi-media resources designed to catalyze innovative advances and learning across formal and informal science, technology, engineering, and mathematics (STEM) education communities. The goal is to identify content that is useful and appeals to the intersection of three target audiences: informal educators, formal educators and researchers conducting research at the intersection of in-school and out-of-school learning. This informal science education (ISE) "journal" would be a multi-media resource, available in both print and electronic forms, that could include videos or digital interactives and provide the potential for audience/reader feedback mechanisms, including input via social media. The publication proposed in this project has the potential to satisfy in part a key need identified in a Wellcome Trust study, Analysing the UK Science Education Community: The contribution of informal providers. The study report identifies the need to build an international depository of what has been and is being learned in ISE experiences at the boundary of in-school and out-of-school STEM learning - including syntheses of research, program evaluations, policy reports and illustrative cases studies. The proposed journal will also provide a vehicle to encourage and develop incentives for practitioners to publish results of their work. The project will use surveys, phone interviews and focus groups to conduct: 1) a landscape assessment, identifying what resources are already available to target audiences, how they are used, and what is missing; 2) front-end research with target audiences prior to publication of pilot issues, assessing interests, needs, and expectations and testing early topics, delivery formats, and discussion vehicles; and (3) formative and summative evaluation, assessing how well the (two-issue) pilot and associated social media vehicles foster synergy and satisfy the needs of the identified target audiences.
DATE: -
TEAM MEMBERS: National Science Teachers Association Kelly Riedinger David Evans Margaret Glass
resource project Public Programs
STEMtastic: NASA in Our Community is a two-year project designed to educate and inspire teachers, students and life-long learners to embrace NASA STEM content. The project will increase awareness of NASA activities, while educating and inspiring students to train for careers that are critical to future economic growth of the country in general, and NASA’s future missions in particular. The Virginia Air & Space Center (VASC) will partner with the Virginia Space Grant Consortium and Analytical Mechanics Associates, Inc. to accomplish this project. VASC will deliver NASA STEM content through (1) STEMtastic Teacher Institutes and Education Modules: (a) a series of two five-day professional development institutes for educators which will result in the (b) development and dissemination of new education modules for grades 4-9; and (2) STEMtastic Exhibits and Demonstrations: new interactive exhibits to used for live demonstrations at VASC; those demonstrations will also be delivered to traditionally underserved schools in the region. All classroom and teaching materials—educator institutes, education modules, exhibit software and demonstration modules—will be developed using NASA content and shared with other institutions to promote the expansion of knowledge about best practices in providing STEM education in both formal and informal education settings. STEMevals, a robust evaluation plan, will be implemented to assess success in each project area. Adjustments will be made along the pipeline to increase effectiveness in reaching the target audience. The project has the potential to reach countless educators, students and museum visitors throughout the U.S."
DATE: -
TEAM MEMBERS: Brian DeProfio Danielle Price
resource project Exhibitions
This three-year research project will study the impact of science center staff facilitation strategies in the area of mathematics learning in a museum exhibit environment. The three main deliverables are: (1) Iteratively developing and refining a theoretical model of how staff facilitation can deepen and extend family mathematical discourse at interactive exhibits; (2) Rigorously testing key components of this model, including the relationship between staff facilitation and the nature of family mathematical discourse; and (3) Providing evidence and research-based tools to support PD efforts for informal STEM educators. The project will leverage the success of the NSF-funded Access Algebra project (DRL-0714634) to advance the field's understanding of socially mediated, informal math learning and identify effective, evidence-based facilitation approaches. The project's research will build from theoretical notion of sociomathematical norms (Yackel & Cobb, 1996), which is currently based on classroom research. A key element of the project will be to determine whether and how, the norms can be applied to informal learning environments. The first phase of the project begins with a qualitative, design-based research (DBR) study to develop a theoretical model of staff-facilitated family math learning, including staff facilitation strategies that support family mathematical discourse and contextual factors that influence that discourse. In the second phase of the project, the team will use an experimental approach to rigorously test the staff facilitation model developed during Phase 1. This mixed-method design will allow the team to both study the complexities of informal math learning and rigorously test causal connections between staff facilitation and the level of family math discourse. Finally, the project staff will provide tools to support PD efforts for informal STEM educators across the country.
DATE: -
resource project Professional Development, Conferences, and Networks
The National Research Council's (NRC) Board on Science Education will identify an expert study committee to develop a report identifying the criteria for successful out-of-school STEM learning based on evidence from successful practice. The committee will be informed by commissioned papers and by a 2-day public workshop that explores the current evidence. The report will be written for policy-makers, funders, non-profit and private industry representatives, and other representatives from civic society. The primary goal of the report will be to help these audiences better understand and more strategically support investments in out-of-school STEM education, and to encourage partnerships that promote the linking of out-of-school STEM learning to school-based learning. This study complements the NRC work done to produce the Successful K-12 STEM Education report and builds from prior NRC studies, especially Learning Science in Informal Environments, Surrounded by Science and Education for Work and Life: Developing Transferable Knowledge and Skills in the 21st Century.
DATE: -
TEAM MEMBERS: Martin Storksdieck Heidi Schweingruber
resource project Public Programs
This research project establishes a new research center, the InforMath Collaborative, that brings together university educational researchers and professionals at art and science museums in San Diego's Balboa Park. The InforMath Collaborative is investigating and building the capacity of informal learning institutions to support content and identity learning in mathematics. Through sustained collaborations that unite research, design, and professional development, members of the InforMath Collaborative are conducting design-based research on exhibits and programs that integrate art and science content from participating museums with the mathematics of topology and projective geometry.

The broader goal of the InforMath Collaborative is to transform cultural perceptions of mathematics in ways that broaden learners' access to the discipline. The project aims to develop informal mathematical learning experiences that make mathematics feel accessible, body-based, creative, and deeply relevant to a wide array of other knowledge domains, including both art and science. The project will build and strengthen regional and national networks of educational professionals who work in informal mathematics learning and expand the capacity of informal institutions to support engaging, innovative, content-rich, and culturally transformative mathematical learning experiences.
DATE: -
TEAM MEMBERS: Ricardo Nemirovsky Paul Siboroski Molly Kelton