"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
Math off the Shelf (MotS) was designed to help those who work in public libraries put math into what they do with grades K-6 children and their families. Public libraries exist in virtually every community in the nation, and increasingly, families rely on them as a free, safe place for children to spend time in the absence of other care. As such, they are an ideal venue for reaching a large and diverse population with math. MotS has: (1) developed research-based English/Spanish materials for informal educators working in public libraries, available for free online (2) supported implementation and institutionalization at libraries across the nation (3) engaged informal educators working in libraries in conducting outreach via state and national library association meetings, webinars, and community and youth agencies (4) conducted evaluation on project impact, as described in the summative evaluation report attached. Dissemination to professional communities will constitute the remaining project work. External evaluation, conducted by Char Associates, identified dramatic changes in attitudes about math and its role in the library, in the amount of math that librarians offer to children and families, and in librarians' communication about math with patrons and peers. Development partners include the library systems of Queens NY, San Jose CA, St Louis MO, Westchester County NY, and dozens of libraries in AZ, CT, FL, and MA.
This paper lays out a theory of (re-)generative learning to explain how families and communities socialize young learners into thinking like scientists and mathematicians. Cultural communities and their families orient their young in varied ways toward the language, behaviors, and self-theories about the future presupposed in the learning of science and mathematics. Certain socialization processes and norms correspond closely with those that scientists and artists use in laboratories, studios, and rehearsals. Certain norms of politeness and patterns of language differ significantly from habits
Females, students of color, and students of low socioeconomic status (SES) are often underserved or marginalized in mathematics education. However, some instructional approaches and intervention programs have been shown to educate these students more equitably. This study examines how girls of diverse racial/ethnic and socioeconomic backgrounds perceived the characteristics of one such intervention program as inspiring the development of greater confidence in their mathematics skills. This article explains the similarities and differences of the perceptions of each group, as well as the
The Learning and Youth Research and Evaluation Center (LYREC) is a collaboration of the Exploratorium, Harvard University, Kings College London, SRI International and UC Santa Cruz. LYREC provides technical assistance to NSF AYS projects, collects and synthesizes their impact data, and oversees dissemination of progress and results. This center builds on the Center for Informal Learning in Schools (CILS) that has developed a theoretical approach that takes into account the particular strengths and affordances of both Out of School Teaching (OST) and school environments. This foundation will permit strengthening the potential of the NSF AYS projects to develop strong local models that can generate valid and reliable data that can guide future investment, design and research aimed at creating coherence across OST and school settings. The overarching questions for the work are: 1. How can OST programs support K-8 engagement and learning in science, and in particular how can they contribute to student engagement with K-8 school science and beyond? 2. What is the range of science learning outcomes OST programs can promote, particularly when in collaboration with schools, IHE's, businesses, and other community partners? 3. How can classroom teachers and schools build on children's OST experiences to strengthen children's participation and achievement in K-12 school science Additionally, the data analysis will reveal: 1. How OST programs may be positioned to support, in particular, high-poverty, female and/or minority children traditionally excluded from STEM academic and career paths; and 2. The structural/organizational challenges and constraints that exist to complicate or confound efforts to provide OST experiences that support school science engagement, and conversely, the new possibilities which are created by collaboration across organizational fields. Data will be gathered from surveys, interviews, focus groups, evaluation reports, and classroom and school data.
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
SRI and Girls, Inc. of Alameda County will develop a problem-based program for underserved middle-school girls. "Build IT" will serve 300 girls in three years providing each with 150 contact hours of programming. The program is designed to increase IT fluency, motivate girls to engage in IT related activities, encourage the pursuit of IT careers and increase interest in mathematics. Participants will progress through three stages: Apprentice, Journeygirl, and Specialist. Apprentices learn how to use Internet communication tools and interact with design professionals in a variety of IT fields. Journeygirls engage in software design and create small mobile devices while working in conjunction with software engineers in Stanford University's Learning, Design, and Technology Program. Specialists continue to work in design teams and build valuable project and resource management skills. A curriculum will be developed that builds on NSF-funded products such as Techbridge (HRD 00-80386) and Imagination Place (HRD 97-14749), while addressing communication technologies, networking, wireless and mobile communication tools, web development and computer programming. Troubleshooting and leadership skills will also be included. Additional activities consist of professional development for Girls, Inc. staff to build IT fluency, as well as Family Tech Nights to encourage parental involvement.
DATE:
-
TEAM MEMBERS:
Melissa KochMelissa BryanMarie BienkowskiDeborah Emery
A Youth-Directed Cafe Scientifique targets culturally, ethnically, and economically diverse youth ages 11-18 with a web-based program designed to engage students in active discourse on current STEM topics. Building on the adult program of the same name, this youth-centered project also provides opportunities for individual and group activities. Project partners include Los Alamos National Laboratory, the Bradbury Science Museum, Sandia National Laboratory, Los Alamos Women in Science, and the University of New Mexico, which will serve as a source of scientists to act as speakers and mentors. Northern New Mexico Collefe, Santa Fe Community College, University of New Mexico, and theNew Mexico Museum of Natural History and Science, as well as area high schools will host discussions and focus group meetings. Recruitment of youth participants will be carried out by New Mexico MESA as well as four local high schools. Project deliverables include a robust model for engaging youth in an active online community and Youth Leadership Teams (YLT). YLT's select topics, recruit members, and facilitate Cafe discussions and blogs. Cafe meetings enable youth to explore a topic of their choice in an online session led by a youth host in conjunction with a guest speaker. The follow-up sessions encourage more in-depth exlopration of the topic via interviews, articles, community meetings, and museum exhibits created in collaboration with the Bradbury Museum. The Cafe website will highlight youth produced podcasts, essays on science topics, and a blog. Strategic impact resulting from this project includes the development of a creattive model that effectively engages youth in STEM discourse while meeting the cultural and intellectual needs. It is anticapated that this project will serve over 5,700 youth in three years.
What's the BIG Idea? will infuse STEM content and concepts into librarians' practice in order to establish the public library as the site of ongoing, developmentally appropriate, standards-based STEM programming for young children and their families. This project will facilitate the infusion of STEM content and concepts into all aspects of library service -- programming, collections development, displays, newsletters, and bibliographies. Science educators and advisors will review and critique the project's STEM content. Building on prior NSF-funded projects, an experienced team of STEM developers and trainers will provide librarians with the content, skills and processes needed to stimulate innovative STEM thinking. Vermont Center for the Book (VCB) will train and equip librarians from three different library systems -- Houston, Texas, the Clinton-Essex-Franklin Library System in New York and statewide in Delaware. The strategic impact of this project is ongoing STEM programming for children and families in large, small, urban and rural libraries. VCB will investigate these questions, among others: How can the public library become a STEM learning center? What information, knowledge, training and materials do librarians need to infuse appropriate science and mathematics language and process skills into their practice and programming? Who are the community partners who can augment that effort? How can the answers to these questions be disseminated nationally? Innovation stems from: 1) STEM content to incorporate into their current practice and 2) skills and processes to create their own STEM programming. In addition, the results will be transferable to a wide range of libraries throughout the nation. The Intellectual Merit lies in augmenting librarians' current expertise so that they can incorporate STEM content and materials into all aspects of the library, a universal community resource. The Broader Impact lies in creating a body of content and approaches to programming that librarians all over the country can use to infuse mathematics and science language and content into their interactions with peers, children, families and the community. This will allow inquiry into what and how new informal STEM knowledge and practice can be effectively introduced into a variety of library settings.
Building Demand for Math Literacy is a comprehensive project designed to increase arithmetic and algebraic mathematical competency among underserved youth, as well as high school and college students trained as Math Literacy Workers. This project builds on the success of the nationally renowned Algebra Project that is designed to foster mathematics achievement among inner city youth. Math Literacy Workers will deliver after school activities to African-American and Hispanic youth in grades 3-6. In addition to offering weekly math literacy workshops, Math Literacy Workers will also develop and implement Community Events for Mathematics Literacy and activities for families in the following cities: Boston, MA; Chicago, IL; Jackson, MS; Miami, FL; Yuma, AZ; New Orleans, LA; San Francisco, CA and Newark, DE. The strategic impact will be demonstrated in the knowledge gained about the impact of diverse learning environments on mathematics literacy, effective strategies for family support of math learning, and the impact of culturally relevant software. Collaborators include the Algebra Project, the TIZ Media Foundation, and the Illinois Institute of Technology, as well as a host of community-based and educational partners. The project deliverables consist of a corps of trained Math Literacy Workers, workshops for youth, training materials and multimedia learning modules. It is anticipated this project will impact over 4,000 youth in grades 3-6, 700 high school and college students, and almost 4,000 family and community participants.
Thirteen/WNET New York will develop and produce ten new episodes for a fifth season of Cyberchase. Broadcast daily on 340 PBS stations, Cyberchase has helped millions of children acquire a stronger foundation in mathematics. Cyberchase's content spans the 3rd-5th grade standards of the National Council of Mathematics. Ancillary materials, outreach and a highly popular Web site extend the learning and help make Cyberchase the sole mathematics media project available for the target age group of 8 to 11 year-olds. The new season will introduce a new campaign, "Math & Inventions: My Big Idea", to link mathematics and technology education and involve children in the invention process. These new programs will enrich the series' content while keeping viewers tuning in to the current shows. Plans include enhancing the Web site, building the inventory of multi-media outreach activities, strengthening the show's presence in after-school programs, and launching a new relationship with the museum community. Multimedia Research will conduct formative evaluation of two new elements to "My Big Idea" and a prototype of the online "Invention Machine." MediaKidz Research and Consulting (MRC) will conduct the pilot phase of a groundbreaking research study to evaluate the impact of varied media, and the interactions between the television series, Web site and outreach components, on children's mathematical thinking and attitudes toward mathematics.
DATE:
-
TEAM MEMBERS:
Sandra SheppardMichael TempletonBarbara Flagg
WGBH Educational Foundation is requesting funds to produce the third and fourth seasons of "NOVA scienceNOW," a multimedia project addressing a wide array of science, technology, engineering and mathematics subjects via multiple platforms including national PBS broadcast, the PBS Web site and innovative outreach initiatives. Project goals are to help the general public understand the value and importance of scientific ressearch and to encourage an interest in STEM careers among younger viewers. INNOVATION/STRAGEGIC IMPACT: The series provides a significant opportunity to develop a new format for science journalism building on brand recognition but potentially reaching a broader and more diverse national audience. The new host will be Dr. Neil deCgrasse Tyson, an accomplished astrophysicist and charismatic science communicator whose partipation will help the series reach out to a broader demographic. NOVA is planning a new scheduling configuration for these future seasons to maximize audience for the six new programs per year, i.e. the programs iwll run consecutively in the NOVA slot during June and July. COLLABORATION: NOVA has developed a new consortium of PBS stations to advise on the series and to contribute editorially to the programs. This will give the program greater geographic coverage and will provide local contacts with researchers at major universities and institutions connected to these stations. The project will also partner with the American Library Association and Sigma Xi and the Astronomical Society of the Pacific in the outreach effort. Multimedia Research, Inc. and Goodman Research Group will conduct formative and summative evaluations, respectively.