The attacks of September 11 2001 and in particular, the sending of letters containing anthrax spores the following October had a profound effect on society, and at the same time on science and its communicative mechanisms. Through a quanto-qualitative analysis of articles taken from four publications: two daily newspapers, the Corriere della Sera from Italy and the New York Times from the United States and two science magazines, Science and Nature, we have shown how the aforementioned events provoked the emergence of media attention regarding bioterrorism. A closer reading of the articles
This award is for a Science and Technology Center devoted to the emerging area of nanobiotechnology that involves a close synthesis of nano-microfabrication and biological systems. The Nanobiotechnology Center (NBTC) features a highly interdisciplinary, close collaboration between life scientists, physical scientists, and engineers from Cornell University, Princeton University, Oregon Health Sciences University, and Wadsworth Center of the New York State Health Department. The integrating vision of the NBTC is that nanobiotechnology will be the genesis of new insights into the function of biological systems, and lead to the design of new classes of nano- and microfabricated devices and systems. Biological systems present a particular challenge in that the diversity of materials and chemical systems for biological applications far exceeds those for silicon-based technology in the integrated-circuit industry. New fabrication processes appropriate for biological materials will require a substantial expansion in knowledge about the interface between organic and inorganic systems. The ability to structure materials and pattern surface chemistry at small dimensions ranging from the molecular to cellular scale are the fundamental technologies on which the research of the NBTC is based. Nanofabrication can also be used to form new analytical probes for interrogating biological systems with unprecedented spatial resolution and sensitivity. Three unifying technology platforms that foster advances in materials, processes, and tools underlie and support the research programs of the NBTC: Molecules of nanobiotechnology; Novel methods of patterning surfaces for attachment of molecules and cells to substrates; and Sensors and devices for nanobiotechnology. Newly developed fabrication capabilities will also be available through the extensive resources of the Cornell Nanofabrication Facility, a site of the NSF National Nanofabrication Users Network. The NBTC will be an integrated part of the educational missions of the participating institutions. NBTC faculty will develop a new cornerstone graduate course in nanobiotechnology featuring nanofabrication with an emphasis on biological applications. Graduate students who enter the NBTC from a background in engineering or biology will cross-train in the other field by engaging in a significant level of complementary course work. Participation in the NBTC will prepare them with the disciplinary depth and cross-disciplinary understanding to become next generation leaders in this emerging field. An undergraduate research experience program with a strong mentoring structure will be established, with emphasis on recruiting women and underrepresented minorities into the program. Educational outreach activities are planned to stimulate the interest of students of all ages. One such activity partnered with the Science center in Ithaca is a traveling exhibition for museum showings on the subject of nano scale size. National and federal laboratories and industrial and other partners will participate in various aspects of the NBTC such as by hosting interns, attendance at symposia and scientist exchanges. Partnering with the industrial affiliates will be emphasized to enhance knowledge transfer and student and postdoctoral training. This specific STC award is managed by the Directorate for Engineering in coordination with the Directorates for Biological Sciences, Mathematical and Physical Sciences, and Education and Human Resources.
The X-Tech program will bring together the Exploratorium and staff at five Beacon Centers to create an innovative technology program using STEM and IT activities previously tested at the Exploratorium. At each X-Tech Club, two Beacon Center staff and two Exploratorium Youth Facilitators will work with 20 middle school students each year for a total of 300 participants. Youth Facilitators are alumni of the Exploratorium's successful Explainer program and will receive 120 hours of training in preparation for peer mentoring. Each site will use the X-Tech hands-on curriculum that will focus on small technological devices to explore natural phenomenon, in addition to digital imaging, visual perception and the physiology of eyes. Parental involvement will be fostered through opportunities to participate in lectures, field trips and open houses, while staff at Beacon Centers will participate in 20 hours of professional development each year.
DATE:
-
TEAM MEMBERS:
Vivian AltmannDarlene LibreroVirginia WittMichael Funk
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
KQED is requesting funds to produce weekly radio science news reports, a weekly television magazine program, a dynamic online website that supports and extends the broadcast material and to create and maintain an active consortium of 13 participating STEM organizations. The project's working title is "Quest: Exploring Our Natural World." Quest's goals are to raise the profile of STEM issues that affect or occur throughout the Northern California region and activate citizens to discuss and investigate STEM issues. STEM content will include research fields that include Physical Sciences, Life Sciences and Earth Sciences. Most of the stories will include content about the technology and engineering used to support scientific endeavors. The KQED Educational Network EdNet will administer the community and educational outreach initiatives, including creating viewer/listener guides, developing and delivering workshops, and providing information built around Quest media. The project design involves innovative use of multiple platforms and collaborative partnerships with local informal educational institutions. The project's collaborators include the Bay Institute, California Academy of Sciences, Chabot Space and Science Center, East Bay Regional Park District, Exploratorium, Girl Scouts, Lawrence Berkeley National Laboratory, Lawrence Hall of Science, Oakland Zoo and The Tech Museum of Innovation. Rockman Et Al will conduct the evaluation of the Quest initiative.
The Great Lakes Science Center, in collaboration with Case Western Reserve University (CASE), proposes to develop a permanent exhibition and related programs on biomedical engineering. The successful implementation of this project would allow CASE and GLSC to inform a broad constituency about select biomedical research advancements, applied technologies, and their relevance to society. When the project is completed, we will be able to expose many thousands of visitors each year to the updated exhibition - increasing their interest in and understanding of important science concepts underlying advancements in biomedical technology. The exhibition would encompass approximately 2000 square feet and feature approximately 20 exhibits, most of which would be interactive. The major audiences for the exhibition include families, school groups, and general museum visitors. The BioMedTech exhibition is located on the Science Center's main floor, which places an emphasis on the science and technology of particular importance to Northeast Ohio. The exhibition will be accompanied by educational programming, public programs, and wide dissemination around the region and within the Science Center world. When fully implemented, the project could reach many hundreds of thousands of visitors and garner national attention through dissemination efforts. Visitors to the exhibition and participants in related programs will come to a better understanding of the connections between biology and technology while learning of science and engineering's role in improving the quality of life in our society.