This 2009 summative evaluation of nanotechnology news segments produced by the Museum of Science utilized a post-only, double-blind, randomly-assigned treatment and control group experiment methodology.
WGBH is producing four, two-hour programs on the lives of scientists. These programs will be the initial programs in a continuing series of television portraits of distinguished scientists to be broadcast as regular features in the prime-time science series NOVA. The scientists to be covered in the first four programs are Galileo Galilei, Charles Darwin, Marie Curie, and Percy Julian. By illuminating the lives and scientific careers of these important figures, the programs will enhance public understanding of such basic scientific concepts as evolution, the solar system, the chemical bond and the structure of the atom. Ultimately, the programs will give viewers a new perspective on the process of scientific discovery. Ancillary educational support for the programs will include enhanced content on the web site at NOVA Online and classroom support material in the NOVA Teacher's Guide that is mailed to 60,000 teachers nationwide. WGBH also has formed an outreach partnership with the American Library Association to create informal educational resources for use by families, youths, and adults. The core of this special outreach plan is a set of Library Resource Kits that will be available to all 16,000 public libraries. Paula Apsell, Executive Producer for NOVA, will serve as PI for the project. Members of the advisory committee include: Evelyn Fox Keller, Professor of History and Philosophy of Science, MIT; Kenneth R. Manning, Thomas Meloy Professor of Rhetoric and of the History of Science, MIT; Noami Oreskes, Associate Professor of History, University of California, San Diego; Daniel I. Rubenstein, Chair of the Department of Ecology and Evolutionary Biology, Princeton University; and Neil D. Tyson, Frederick P. Rose Director of the Hayden Planetarium.
This planning grant award addresses the subject of cosmology using contemporary film technology. A screen play and film prototype will take viewers from the historical Big Bang phenomena to contemporary thinking on dark energy and matter. STEM disciplines incorporated within this project are mathematics, physics, biology, chemistry and geology, in addition to astronomy. An additional significant issue in this award will be the effort to form a network of dome and planetarium theaters. Such an organization could facilitate promotion and evaluation of this project and future projects. In the future, the network will be positioned to assess the differences in educational impact from large format flat screen, large format dome screen and planetarium dome presentations. Collaborations on this project include The Reuben H. Fleet Science Center, the Mathematics Science Research Institute, and advisors George Smoot and Saul Perlmutter of the Lawrence Berkeley Laboratory. Barbara Flagg is the project evaluator. Specific needs for the planning grant are to: 1. gather formative evaluation on audience parameters; 2. develop a short prototype film and a first draft of the screen play; 3. complete the advisory team; 4. translate the deliverables into Spanish language; 5. evaluate and bid the computer animation facilities; and 5. identify a network of dome and planetarium theaters for their evaluation.
The Royal Society of Chemistry commissioned TNS BMRB to conduct this research to provide well-grounded, robust data on the public’s relationship with chemistry in the UK. This programme of research aimed to understand where people are now, explore what drives people's views, identify windows of opportunity, and use evidence to produce guidance on opportunities and challenges in communicating chemistry to the public.
Sustainable Nano is the a blog created and written by scientists at the Center for Sustainable Nanotechnology, a research center located primarily at universities in the midwest that seeks to advance technological innovations that are safe and sustainable by discovering molecular principles that govern nanoparticle-biological interactions, preparing a new and diverse generation of trans-disciplinary scientists, and engaging the general public.
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE:
-
TEAM MEMBERS:
Katherine PerkinsDaniel SchwartzMichael DubsonNoah Podolefsky
The PhET Interactive Simulations group at the University of Colorado is expanding their expertise of physics simulations to the development of eight-to-ten simulations designed to enhance students' content learning in general chemistry courses. The simulations are being created to provide highly engaging learning environments which connect real life phenomena to the underlying science, provide dynamic interactivity and feedback, and scaffold inquiry by what is displayed and controlled. In a second strand of the project, a group of experienced faculty participants are developing and testing lecture materials, classroom activities, and homework, all coordinated with well-established, research-based teaching methods like clicker questions, peer instruction, and/or tutorial-style activities, to leverage learning gains in conjunction with the simulations. The third strand of the project focuses on research on classroom implementation, including measures of student learning and engagement, and research on simulation design. This strand is establishing how specific characteristics of chemistry sim design influence engagement and learning, how various models of instructional integration of the sims affect classroom environments as well as learning and engagement, and how sim design and classroom context factors impact faculty use of sims. To ensure success the project is basing sim design on educational research, utilizing high-level software professionals (to ensure technically sophisticated software, graphics, and interfaces) working hand-in-hand with chemistry education researchers, and is using the established PhET team to cycle through coding, testing, and refinement towards a goal of an effective and user friendly sim. The collection of simulations, classroom materials, and faculty support resources form a suite of free, web-based resources that anyone can use to improve teaching and learning in chemistry. The simulations are promoting deep conceptual understanding and increasing positive attitudes about science and technology which in turn is leading to improved education for students in introductory chemistry courses both in the United States and around the world.
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE:
-
TEAM MEMBERS:
Katherine PerkinsMichael DubsonNoah FinkelsteinRobert ParsonCarl Weiman