Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project would expand the informal STEM learning field's understanding of how to use digital science media to increase STEM educational experiences and opportunities for English language learners. Across the U.S. there are significant STEM opportunity and achievement gaps for English learners with varying levels of English proficiency. This is at a time when the U.S. is facing a shortage of STEM professionals in the workforce including the life and physical science fields. This project aims to close these gaps and improve English learners' STEM learning outcomes using digital media. Within community colleges, there are multiple site-based programs to provide content to help English learners to learn English and to improve their math and literacy skills. Involving the state community college networks is a critical strategy for gathering important feedback for the pedagogical approach as well as for recruiting English learner research participants. The team will initially study an existing YouTube chemistry series produced by Complexly then produce and test new videos in Spanish using culturally relevant instructional strategies. The target audience is 18-34-year-old English learners. Project partners are Complexly, a producer of digital STEM media and EDC, a research organization with experience in studying informal STEM learning.

The project has the potential to advance knowledge about the use of culturally relevant media to improve STEM opportunities and success for English language learners. Using a Design-Based Implementation Research framework the research questions include: 1) what are the effective production and instructional strategies for creating digital media to teach science to English learners whose native language is Spanish? 2) what science content knowledge do English learners gain when the project's approach is applied to a widely available set of YouTube videos? and 3) how might the findings from the research be applied to future efforts targeting English learners? The project has the potential to significantly broaden participation in science and engineering. Phase 1 of the research will be an exploration of how to apply strategic pedagogical approaches to digital media content development. Interviews will be conducted with educators in 3 focal states with high numbers of English language learners (NY, CA, TX) to reflect on pedagogical foundations for teaching science to English learners. A survey of 30 English learners will provide feedback on the perceived strengths and weaknesses of a selection of existing YouTube chemistry videos. Phase 2 will create/test prototypes of 6 adapted chemistry videos. Forty students (ages 18-34) will be recruited and participate in cognitive interviews with researchers after viewing these videos. Based on this input additional videos will be produced with revised instructional strategies for further testing. Additional rounds of production and testing will be conducted to develop an English learners mini chemistry series. Phase 3 will be a pilot study to gauge the science learning of 75 English learners who will view an 11-episode chemistry miniseries. It will also identify gaps in expected learning to determine whether any further adjustments are necessary to the instructional approach.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kelsey Savage Ceridwen Riley Stan Muller Heather Lavigne Caroline Parker Katrina Bledsoe
resource research Media and Technology
In this chapter we present the ways in which institutional cultural differences impact the development and implementation of learning activities in informal settings. Five university-based centers for the study of chemistry worked with informal learning professionals to re-envision educational and public outreach activities about science. The projects were part of a broader effort to catalyze new thinking and innovation in informal education and chemistry centers. The set of projects illustrates the broad possibilities for informal learning settings, with projects targeting diverse audiences
DATE:
resource project Media and Technology
The PhET Interactive Simulations group at the University of Colorado is expanding their expertise of physics simulations to the development of eight-to-ten simulations designed to enhance students' content learning in general chemistry courses. The simulations are being created to provide highly engaging learning environments which connect real life phenomena to the underlying science, provide dynamic interactivity and feedback, and scaffold inquiry by what is displayed and controlled. In a second strand of the project, a group of experienced faculty participants are developing and testing lecture materials, classroom activities, and homework, all coordinated with well-established, research-based teaching methods like clicker questions, peer instruction, and/or tutorial-style activities, to leverage learning gains in conjunction with the simulations. The third strand of the project focuses on research on classroom implementation, including measures of student learning and engagement, and research on simulation design. This strand is establishing how specific characteristics of chemistry sim design influence engagement and learning, how various models of instructional integration of the sims affect classroom environments as well as learning and engagement, and how sim design and classroom context factors impact faculty use of sims. To ensure success the project is basing sim design on educational research, utilizing high-level software professionals (to ensure technically sophisticated software, graphics, and interfaces) working hand-in-hand with chemistry education researchers, and is using the established PhET team to cycle through coding, testing, and refinement towards a goal of an effective and user friendly sim. The collection of simulations, classroom materials, and faculty support resources form a suite of free, web-based resources that anyone can use to improve teaching and learning in chemistry. The simulations are promoting deep conceptual understanding and increasing positive attitudes about science and technology which in turn is leading to improved education for students in introductory chemistry courses both in the United States and around the world.
DATE: -
TEAM MEMBERS: Katherine Perkins Robert Parson
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman