This front-end study aimed to capture baseline information about students' science interests and skills in support of the development of a new program called the Koshland Youth Research Lab. Specifically, the evaluation was driven by the following questions: 1) What are students' current attitudes and interests toward four selected science topics: adolescent sleep needs, teen sexuality and risky behaviors, water quality in your community, and adolescent health and nutrition? 2) What are students' current knowledge and skills with regard to scientific research methods and research design? Data
DATE:
TEAM MEMBERS:
Jes A. KoepflerMarian Koshland Science Museum
CENTC's (Center for Enabling New Technologies Through Catalysis) outreach is focused on partnerships with science centers. Initially we worked with the Pacific Science Center (PSC) to train our students in effective communication of science concepts to public audiences. Later we developed a short-term exhibit, Chemist - Catalysts for Change in the Portal to Current Research space. As part of the CCI/AISL partnership program, we partnered with Liberty Science Center to create an activity on a multi-touch media table, "Molecule Magic." We are currently developing another exhibit with PSC.
"Human +" is a collaboration among the New York Hall of Science (NYSCI), NSF Quality of Life Technology Engineering Research Center (QoLT ERC) of the University of Pittsburgh and Carnegie Mellon University, Oregon Museum of Science and Industry (OMSI), and the Institute for Learning Innovation. The project will engage engineers, educators, designers, and people with disabilities in a process of participatory design to create a 2,500 square foot traveling exhibition entitled "Human +". The STEM content is engineering, specifically the extraordinary technological advances being made to enhance human abilities. The project is making three significant contributions to the Informal Science Education (ISE) field: 1) It is a model of close integration of an NSF-funded engineering research center into an ISE project. (2) It engages people with disabilities, both as participants and audiences. (3) It broadens engagement with engineering as a participatory, creative, and socially important ISE undertaking. Project deliverables are: (1) a model for participatory design of ISE activities to generate innovation among engineers, people with disabilities, ISE professionals, and designers; and 2) a 2,500 square-foot traveling exhibition engaging the public in the science, technology, and social issues of human enhancement. Front-end evaluation will be conducted by OMSI to explore pre-existing knowledge and attitudes, integrating significant numbers of people with disabilities including veterans, young people, and older people. Formative evaluation will likewise be integrated with the participatory design process, with prototypes being tested both by audiences and by the core "Human +" participatory design team. Summative evaluation by Institute for Learning Innovation will address both the effectiveness of the participatory design process and the effectiveness of the exhibition in addressing the National Academy for Engineering goals for public understanding of engineering as a creative and socially engaged field. An estimated 700,000 visitors will experience the "Human +" exhibition at OMSI and NYSCI. In addition, OMSI will tour the exhibition through its extensive and diverse network of science centers, with 24 science centers having expressed interest as potential host sites. The Science Friday webcast/podcast will reach an estimated 1.3 million listeners. Public audiences will engage in the topic of engineering and better understand its importance to human existence through experiencing one compelling research area. The project team will work with the Veterans Administration and DARPA to engage veterans with disabilities both as participants and as audiences. The exhibit with its human-focused content will also stimulate interest among older adults and promote the engineering field to groups underrepresented in engineering such as people with disabilities, girls, and minority youth. The project places cutting-edge technology and engineering practice in a profoundly personal context. "Human +" will contribute to the empowerment of the great majority of people who have, or will have, disabilities during their lifetime and for those of us who care for people with disabilities.
WGBH is requesting funds to produce a four-hour NOVA television special with accompanying Web and outreach activities about the pervasive role of materials in our lives. The overarching goals of the project are to: 1) enhance public engagement in and understanding of materials science, including appreciation of its effects on society; 2) promote collaboration among educators, scientists and community-based organizations to reach a broad audience; and 3) create effective methods of expanding informal science learning that can be evaluated for their lasting impact on the field. The mini-series, "STUFF: The Materials that Shape our World," will offer an appreciation of the human and scientific factors that drive innovation in materials science, from ancient breakthroughs to today's explosion of biological and nanomaterials. The four episodes, themed around "Stronger," "Smaller," "Smarter" and "Cleaner" will provide a clear focus on the interdisciplinary nature of materials science and showcase dramatic stories of past inventions and exciting new discoveries. The NOVA team in association with the Materials Research Society (MRS) will produce the series. The "STUFF" series is anticipated to be broadcast on PBS in the fall of 2008. WGBH and MRS will work with local PBS stations to train local scientists in public outreach. Multimedia Research will conduct formative evaluation of the project components, and Goodman Research Group will conduct summative evaluation of both the series and the outreach efforts.
This project will develop a prototype intelligent cyberlearning platform for middle school audiences at a museum location to test and evaluate the use of virtual learning technologies. The content for this test is focused on sustainability issues that enable students to develop an age-appropriate understanding of the relationships between specific conservation decisions, energy use, human health, and population growth within Earth's ecosystem. The prototype cyberlearning system will demonstrate how users can learn about science topics by interacting with a display of environmental factors that enable them to explore the impact of social, economic, and technological forces that may change one existing state and condition to another. The system will enable users to understand the interrelationships of those elements by enabling them to change conditions and then observing the effect of the changes they make on the conditions presented in the initial model. The prototype intelligent cyberlearning system will provide a unique integration of a sophisticated agent-based modeling simulation of environmental, social, and economic phenomena with three advanced learning technologies: game-based learning systems, intelligent tutoring systems, and narrative-centered learning systems. The game-based and narrative aspects of the project are embodied in the interactive time-travel focus of the 3D display on a multi-touch surface computing table in which users will play the role of environmental scientists who have been charged with helping earth become a thriving green planet. They will go back in time and be given the opportunity to make different decisions on any range of options. After they make their decisions, they will travel forward in time to see the results of their decisions. All of the interactions will be used to dynamically generate their time-travel adventures. The intelligent tutoring system will track user\'s problem-solving activities in the simulated world. As users make decisions, the intelligent tutoring system will draw inferences about their level of understanding of key environmental concepts. Given the current problem-solving goal (e.g., reduce green house gases) and the current state of the environment (e.g., climatological state, earth's population, factory emissions), the intelligent tutoring system will draw on its knowledge of common environmental misconceptions to assist students as they progress through the sustainability narratives. The intelligent tutoring system will receive the updated state from the agent-based simulation, which will then provide explanatory commentary and advice through the virtual human to the users about the causal connections underlying the results of the decisions they have made. Similarly, during the course of decision-making, users will be able to request advice, and the same computational framework will drive the virtual human\'s advice generation functionalities. The project will design, development, deploy, and evaluate a prototype intelligent cyberlearning platform for sustainability that supports independent, but guided, exploration of science topics. Because all users interactions will be accompanied by a virtual environmental scientist who will narrate their journeys and offer problem-solving advice, users will be afforded rich learning opportunities that support independent inquiry but also provided guided exploration of complex science topics. With a focus on group learning experiences in the out-of-school setting, the virtual environmental scientist will answer questions that will engage groups of users in a collaborative effort to understand the rich interrelationships of sustainability. The project will demonstrate the transformative potential of intelligent cyberlearning systems that integrate agent-based modeling with game-based learning, intelligent tutoring systems, and narrative-centered learning in an out-of-school setting to enable users to experience science in fundamentally new ways.
DATE:
-
TEAM MEMBERS:
James LesterBradford MottJames MinoguePatrick Fitzgerald
The investigators plan to design, develop and test a series of exhibit prototypes that build visitors' capacity to engage in discussions of socio-scientific issues, particularly those related to the numerous human-biology and health-related socio-scientific issues present in their lives today. The purpose of this small-scale project will be to explore the feasibility of designing un-facilitated museum exhibit experiences that engage museum visitors in activities where they recognize the components of socio-scientific arguments, evaluate them, and pose arguments of their own. The exhibit will use techniques of interactive exhibits usually applied in science museums to explore objects, phenomena, or scientific and engineering processes but the subject of this exhibit is about words and talk rather than things and physical phenomena. It is intended to give visitors practice in science thinking skills that citizens can use in listening critically, assessing arguments, and framing arguments of their own. This project will support the design, development, and testing of six unfacilitated activities that engage visitors in deconstructing, evaluating, and developing arguments related to socio-scientific issues. The investigators will develop prototypes so that labels, content, and physical design can be changed during the course of formative testing. The prototypes will be developed by members of the Museum of Science Education and Strategic Projects Departments. This project is intended to gather evidence through evaluation about whether an unstaffed exhibit can be designed to increase visitors\' capacity to engage in discussions of socio-scientific issues and health-related socio-scientific issues. The Museum of Science Research and Evaluation Department will conduct the formative evaluation of these prototypes. It will provide new evidence about the ability of museum exhibits to increase the scientific thinking skills of visitors.
WGBH is producing the fifth and sixth seasons of NOVA scienceNOW, a multimedia project that addresses a wide array of science, technology, engineering, and mathematics subjects via multiple platforms. They include national PBS broadcast, the PBS web site, and innovative outreach activities such as an expanded Science Café initiative. Hosted by astrophysicist Dr. Neil deGrasse Tyson, Season Five will air in 2010; Season Six in 2011. The focus is "stories of transformative research," e.g., nanotechnology, stem cells, quantum computing, as well as clean energy, and climate change. Project goals are to "produce a lasting impact on Americans' appreciation for and understanding of current scientific research," and to encourage an interest in STEM careers among younger viewers. Building upon solid prior work, the proposed project is finding new ways to interweave the television show, web materials, and Science Cafés to provide multiple entry points and pathways for the audience. For example, they will produce 32 web-only scientist profiles supported by a blog and social media tools, and then train these scientists as presenters for the Science Cafés. NOVA is planning a new strategy to maximize carriage and increase audience for the six new programs per year; the programs will run consecutively in the NOVA Wednesday evening primetime slot during the summer. During Season Three, over 2.7 million television viewers per week tuned in NOVA scienceNow, with 62,000 unique visitors to the web site per month and 75 active Science Cafés across the country. The expanded Science Café initiative is designed to become self-sustaining beyond the grant period through new partnerships with groups such as the Astronomical Society of the Pacific, the American Chemical Society, and the Coalition for the Public Understanding of Science. The project will also collaborate with the Association of Science-Technology Centers and science centers around the country to host Science Cafés featuring scientists profiled on the web. Goodman Research Group will assess the reach and effectiveness of Seasons Five and Six. The focal/primary evaluation activity is a viewing and engagement study on the influence of viewing the series along with accessing and participating actively with the increased web and outreach offerings. This study will comprise web-based surveys with adaptive branching patterns, which will include data collection from a variety of participants and will focus on participants? use of the series, website, and outreach. The summative evaluation will measure how the project is reaching these audience segments, while also meeting the overall goals of increasing public understanding of science and engagement in science-related activities.
Informal science education creates opportunities for the general public to learn about complex health and science topics. Tissue engineering is a fast-growing field of medical science that combines advanced chemistries to create synthetic scaffolds, stem cells, and growth factors that individually or in combination can support the bodies own healing powers to remedy a range of maladies. Health literacy about this topic is increasingly important as our population ages and as treatments become more technologically advanced. We are using a science center planetarium as a projection space to
DATE:
TEAM MEMBERS:
Anna WilsonLaura GonzalezJohn Pollock
EdVenture Children's Museum, a hands-on, children's museum in Columbia, S.C., in close collaboration with NIH-funded researchers at the University of South Carolina, proposes a five-year, SEPA project titled "Unlocking the Mysteries of Chronic Diseases: BioInvestigations for Family, School and Youth Audiences." The program will develop teaching laboratories and experiments to educate youth ages 5-14, teens and adults about biomedical science topics in a fun, investigatory way. From these laboratory experiences, EdVenture will also develop educational programs designed to engage disadvantaged audiences in schools and communities to help expose them to the world of science and the benefits of community-based translational research. The laboratories and educational programs will utilize scientific content drawn from NIH-sponsored biomedical research, and will translate the research process and public impact into meaningful experiences for the public. These programs will reach a large population, both urban and rural, in socio-economically depressed areas of the state, promoting students' interest in topics that they may not otherwise be exposed to and encouraging a lifelong familiarity and facility with scientific thought and practice. Throughout the life expectancy of this project, a projected 2.5 million children and adults will experience the laboratories and related educational programs. Long-term goals are to encourage future biomedical science career choices, and most importantly, empower a child to take control over his/her own health decisions and to develop the necessary skills to navigate the flood of health information inherent in the quickly changing landscape that is health today.
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.
The Oregon Museum of Science and Industry (OMSI), in partnership with the J. Craig Venter Institute (JCVI), proposes to develop the Zoo in You: Exploring the Human Microbiome, a 2,000 square foot bilingual (English and Spanish) traveling exhibition for national tour to science centers, health museums, and other relevant venues. The exhibition will engage visitors in the cutting edge research of the National Institutes of Health's (NIH) Human Microbiome Project (HMP) and explore the impact of the microbiome on human health. To enrich the visitor experience, the Zoo in You project will also produce an interactive bilingual website and in-depth programs including science cafes and book groups for adult audiences. JCVI will provide its expertise and experience as a major site for HMP genomics research to the project. In addition, advisors from the Oregon Health & Science University, Multnomah County Library, the Multnomah County Health Department, ScienceWorks Hands-On Museum, Science Museum of Minnesota, and other experts will guide OMSI's development of exhibits and programs. The Institute of Learning Innovation in collaboration with OMSI will evaluate the exhibits, programs, and website. Front-end, formative, remedial, and summative evaluation will be conducted in English and Spanish at OMSI, ScienceWorks, and tour venues. The exhibition's target audience is families and school groups with children in grades 4-12. Latino families are a priority audience and the project deliverables will be developed bilingually and biculturally. The Zoo in You will tour to three venues a year for a minimum of eight years. We conservatively estimate that over two million people will visit the exhibition during the national tour. This project presents a powerful opportunity to inform museum visitors about new discoveries in genomic research, to invite families to learn together, and to present and interpret health-related research findings for diverse audiences. PUBLIC HEALTH RELEVANCE (provided by applicant): Our research education program, the Zoo in You (ZIY): Exploring the Human Microbiome, is relevant to public health because it will inform exhibition visitors and program participants about the significant new research of the NIH's Human Microbiome Project (HMP). Visitors will make connections between basic research, human health, and their own personal experiences. The bilingual (English and Spanish) ZIY exhibits and programs will present research finding and public health information in enjoyable and engaging ways to reach diverse family and adult audiences.
Goals: 1) Increase the number of Alaskans from educationally and/or economically disadvantaged backgrounds, particularly Alaska Natives, who pursue careers in health sciences and health professions and 2) Inform the Alaskan public about health science research and the clinical trial process so that they are better equipped to make healthier lifestyle choices and better understand the aims and benefits of clinical research. Objectives: 1) Pre-med Summer Enrichment program (U-DOC) at UAA (pipeline into college), 2) Statewide Alaska Student Scientist Corps for U-DOC, 3) students (pipeline into college), 4) Facility-based Student Science Guide program at Imaginarium Science Discovery Center, 5) Job Shadowing/Mentorship Program for U-DOC students and biomedical researchers, 6) Research-based and student-led exhibit, demonstration, and multi-media presentations, 7) Professional Development for educators, 8) North Star Website.