Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.
This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE:
-
TEAM MEMBERS:
Ila BermanT. Donna ChenKaren RheubanQian Cai
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.
The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.
This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE:
-
TEAM MEMBERS:
Perla MyersVitaliy PopovOdesma DalrympleYaoran LiJoi Spencer
Basing mainly on author's direct involvement in some science communication efforts in India, and other reports, this contribution depicts and analyses the present science communication/ popularization scenario in India. It tries to dispel a myth that rural people don't require or don’t crave for S&T information. It discusses need for science and technology communication, sustaining curiosity and creating role models. Citing cases of some natural, 'unnatural' and organized events, it recounts how S&T popularization efforts have fared during the past decade and a half. It's made possible using
The Museum of Science and Industry (MOSI), in collaboration with the Tampa Community Development Corporation (CDC), will create a youth STEAM (science, technology, engineering, arts, and mathematics) program designed by East Tampa neighborhood participants for the neighborhood. The STEAM program will be a first of its kind in the area and will bring a continuum of experiences in STEAM fields to underserved middle and high school students, as well as volunteer participants, who come from the East Tampa neighborhood. Initial programming topics for career exploration include astronomy/cosmology and space exploration, environmental sciences, engineering, robotics, crime scene forensics, and medical explorations. The project will expand the museum's ability to create a STEAM continuum, increase interest in STEAM careers, and to increase awareness of skills necessary to be successful in STEAM careers.
The Richmond Public Library will create The Richmond Digital Health Literacy Project to provide low-income residents with tools and skills needed to access online information to improve their health. Participants will learn how to gain access to digital reference materials, e-books, mobile library offerings, and other resources. The project will bring together groups of participants around the topic of health information to develop customized online health curricula, provide training to 180 low-income residents in digital health literacy, and supply free broadband and wireless antennae to public computer centers. These activities will enable participants to develop skills and access relevant digital content to improve the health and the overall quality of life of Richmond residents.
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE:
-
TEAM MEMBERS:
Loren ThompsonJeremy BabendureBen Wiehe
It is all very well to note the hyperbole about patents and ‘intellectual property’ in the recent battles between technology companies such as Apple, Samsung and HTC. But how can museums productively use collection items marked with a patent beyond workaday tasks of identification and cataloguing? We argue that information on patents can enhance visitors’ critical engagement with museum displays; complex ownership claims and counter-claims in patent disputes can underpin lively narratives based around museum objects. Asking why some objects and not others were patented, and how historical
This report from the National Research Council explores how learning changes the physical structure of the brain, how existing knowledge affects what people notice and how they learn, the amazing learning potential of infants, and the relationship between classroom learning and learning in everyday settings such as community and the workplace. It identifies learning needs and opportunities for teachers and provides a realistic look at the role of technology in education.
This poster was presented at the 2014 AISL PI Meeting held in Washington, DC. It discusses the second season of SciGirls, a multimedia project designed to encourage and empower more girls to pursue careers in STEM.
DATE:
TEAM MEMBERS:
Twin Cities Public TelevisionRita Karl
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a Game Design Through Mentoring and Collaboration summer program for 16 high school students and 3 college student mentors who collaborated with a science subject matter expert. After four weeks, most students produced 2-D video games with themes based
DATE:
TEAM MEMBERS:
Neda KhaliliKimberly SheridanAsia WilliamsKevin ClarkMelanie Stegman
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE:
-
TEAM MEMBERS:
Andre NelYoram CohenHilary GodwinArturo KellerPatricia Holden